No part this publication may be reproduced in any form or by any means without permission in writing from the publisher.

Trademarks:
- BR-Script, DX-2000 and LT-2000 are registered trademarks of Brother Industries, Ltd.
- Centronics is a registered trademark of Genicom Corporation.
- PostScrap is a registered trademark of Adobe Systems Incorporated.
- IBM Proprinter XL is a registered trademark of International Business Machines Corporation.
- EPSON FX-850 is a registered trademark of Seiko Epson Corporation.
- HP-GL and HP Laser Jet 5 are registered trademarks of Hewlett Packard Company.
PREFACE

This service manual contains basic information required for after-sales service of the laser printer (hereinafter referred to as “this machine” or “the printer”). This information is vital to the service technician in maintaining the high printing quality and performance of the printer.

This manual consists of the following chapters:

CHAPTER I : GENERAL
Features, specifications, etc.

CHAPTER II : THEORY OF OPERATION
Basic operation of the mechanical system and the electrical system, and their timing.

CHAPTER III : ELECTRICAL SYSTEM
Theory of the electronics circuit

CHAPTER IV : MECHANICAL SYSTEM
Requirements for a suitable location, disassembling and reassembling procedure of mechanical system.

CHAPTER V : MAINTENANCE AND SERVICING
Parts replacement schedule, list of tools, lubricants and cleaners.

CHAPTER VI : TROUBLESHOOTING
Reference values and adjustment, troubleshooting for image defects, troubleshooting for malfunctions, etc.

APPENDICES : Engin Block Diagram, PCB Circuitry Diagrams, etc.

Information in this manual is subject to change due to improvement or re-design of the product. All relevant information in such cases will be supplied in service information bulletins (Technical Information).

A thorough understanding of this printer, based on information in this service manual and service information bulletins, is required for maintaining its quality performance and fostering the practical ability to find the cause of troubles.
CONTENTS

CHAPTER I GENERAL

1. FEATURES .. I-1
2. SPECIFICATIONS .. I-1
3. SAFETY INFORMATION .. I-6
 3.1 Laser Safety (110 - 120V Model only) ... I-6
 3.2 CDRH Regulations (110 - 120V Model only) ... I-7
 3.3 Additional Information ... I-7
4. PARTS OF THE PRINTER ... I-8
 4.1 External Views ... I-8
 4.2 Cross Sectional View .. I-9
5. STORAGE AND HANDLING OF EP-ED CARTRIDGES ... I-10
 5.1 Storage of Sealed EP-ED HC Cartridges ... I-10
 5.2 Storage of Unsealed EP-ED HC Cartridges ... I-10

CHAPTER II THEORY OF OPERATION

1. BASIC OPERATIONS .. II-1
 1.1 Mechanical Configuration ... II-1
 1.2 Main Drive .. II-2
 1.3 Basic Sequence of Operations ... II-3
2. LASER/SCANNER SYSTEM ... II-4
3. IMAGE FORMATION SYSTEM .. II-5
 3.1 Outline ... II-5
 3.2 Printing Process ... II-5
 3.2.1 Electrostatic latent image formation stage ... II-6
 3.2.2 Developing stage .. II-8
 3.2.3 Transfer stage .. II-9
 3.2.4 Fixing stage .. II-10
 3.2.5 Drum cleaning stage .. II-10
 3.3 Operation ... II-11
4. PAPER PICK-UP/FEED SYSTEM ... II-12
 4.1 Outline ... II-12
 4.2 Cassette Feed .. II-13
 4.3 MP Tray Feed .. II-14
 4.4 Paper Jam Detection ... II-15
CHAPTER III ELECTRICAL SYSTEM .. III-1

1. MAIN PCB .. III-1
 1.1. Outline .. III-1
 1.2. Video Controller Circuit .. III-2
 1.3. Engine Controller Circuit ... III-6

2. PAPER FEED DRIVE CIRCUIT ... III-7

3. DISPLAY CIRCUIT ... III-9
 3.1 Outline ... III-9
 3.2 Operation ... III-9

4. LOW-VOLTAGE POWER SUPPLY ASSY .. III-10
 4.1 Outline ... III-10
 4.2 Protection Functions ... III-10

5. HIGH-VOLTAGE POWER SUPPLY ASSY .. III-12
 5.1 Outline ... III-12
 5.2 Operation of the Components of the High-Voltage Power Supply Assy III-12

CHAPTER IV MECHANICAL SYSTEM ... IV-1

PRINTER DISASSEMBLING PROCEDURE .. IV-2

PRINTER BODY .. IV-3
 1.1 Configuration ... IV-3
 1.2 Control Panel Unit ... IV-3
 1.3 Toner Cartridge Lid ... IV-3
 1.4 Side Cover L ... IV-4
 1.5 Font Cover Assy ... IV-5
 1.6 Upper Cover Assy, Rear Cover Assy ... IV-5
 1.6.1 Upper cover assy, rear cover assy ... IV-5
 1.6.2 Changeover guide, jam remove cover .. IV-7
 1.7 Side Cover R .. IV-7
 1.8 DC Fan Motor ... IV-8
 1.9 Main PCB ... IV-9
 1.10 Laser Unit .. IV-11
 1.11 Cartridge Stopper Assy .. IV-12
 1.12 Paper Feed Chassis Unit .. IV-13
 1.13 Separation Pad Assy .. IV-15
 1.14 MP PE Sub Actuator ... IV-15
 1.15 P Feed /Size-SW PCB Assy .. IV-16
 1.16 Size-Switch Spring .. IV-16
 1.17 Regist Sensor Actuator .. IV-16
 1.18 PE Sensor Actuator MP .. IV-17
1.19 Tray Sensor Holder ... IV-17
1.20 Roller Holder .. IV-18
1.21 Paper Pick-up Roller Assy, Bearing ... IV-18
1.22 Paper Pick-up Solenoid .. IV-20
1.23 Paper Feed Motor Assy .. IV-20
1.24 MP Tray Cover ... IV-21
1.25 MP Tray Assy ... IV-22
1.26 Paper Path Separation Plate, Paper Path Separation Film IV-23
1.27 Latch ... IV-23
1.28 Fixing Unit (for both 120V and 230V, the only difference is the halogen heater) IV-24
1.29 Transfer Unit ... IV-27
1.30 DC Gear Holder Assy .. IV-28
1.31 PS Switch Wire, Remote Switch .. IV-29
1.32 High-Voltage Power Supply PCB Assy IV-29
1.33 Low-Voltage Power Supply PCB Assy IV-30
1.34 Toner Cartridge (EP-ED HC Cartridge) IV-31
1.35 Paper Tray ... IV-32

CHAPTER V MAINTENANCE AND SERVICING V-1
1. PERIODICAL REPLACEMENT PARTS V-1
2. CONSUMABLE PARTS STANDARD ENDURANCE TABLE V-1
3. LIST OF STANDARD TOOLS ... V-2
4. LIST OF LUBRICANTS AND CLEANERS V-3

CHAPTER VI TROUBLESHOOTING VI-1
1. INTRODUCTION .. VI-1
 1.1 Initial Check ... VI-1
 1.2 Basic Procedure .. VI-2
2. TEST PRINTING AND MECHANICAL CHECK VI-2
 2.1 Test Printing ... VI-2
3. IMAGE DEFECTS ... VI-3
 3.1 Image Defect Examples ... VI-3
 3.2 Troubleshooting Image Defects .. VI-4
4. TROUBLESHOOTING OF MALFUNCTIONS VI-11
5. TROUBLESHOOTING PAPER TRANSPORT PROBLEMS VI-18
 5.1 Paper Jams .. VI-18
 5.2 Incomplete Paper Feed ... VI-21
6. OPERATION .. VI-23
 6.1 Line Inspection Mode Procedure .. VI-23
 6.2 DRAM Test ... VI-25
7. STATUS MESSAGE LIST ... VI-26

CHAPTER VII TROUBLESHOOTING ... VII-1
1. HIDDEN FUNCTIONS .. VII-1
 1.1 Holding down Specified key(s) at Power on ... VII-1
 1.2 Off-line and Hold down Mode + FF CONT keys .. VII-2
 1.3 Off-line and Hold down CONT + SEL keys ... VII-17

APPENDIX A
1. Engine Block Diagram ... A-1
2. Paper Feed/Size-SW PCB Circuitry Diagram (1/1) .. A-2
3. Main PCB Circuitry Diagram (1/7) ... A-3
4. Main PCB Circuitry Diagram (2/7) ... A-4
5. Main PCB Circuitry Diagram (3/7) ... A-5
6. Main PCB Circuitry Diagram (4/7) ... A-6
7. Main PCB Circuitry Diagram (5/7) ... A-7
8. Main PCB Circuitry Diagram (6/7) ... A-8
9. Main PCB Circuitry Diagram (7/7) ... A-9
10. Control Panel PCB Circuitry Diagram (1/1) ... A-10
11. Laser LD PCB Circuitry Diagram (1/1) ... A-11
12. Serial NO. Description ... A-12
CHAPTER 1 GENERAL

1. FEATURES

A. This high-speed, non-impact (low-noise) printer is based on electrophotography, electronics and laser technology.

B. The printer is compact and easy to carry. The internally-storable, front-loading paper cassette enables you to save an occupation space for the machine; the printer can now be installed in a smaller place.

C. The charging roller, developing cylinder, photosensitive drum and cleaner of the printer are combined into a single assembly called an “EP-ED HC cartridge”. The cartridge can be replaced by the user when necessary without a need of service call. High printing quality is maintained by a simple cleaning procedure.

D. Laser beam safety is designed into the printer. The printer is approved by the US Center for Devices and Radiological Health (CDRH).

E. Paper can be fed in two ways, by the multi-purpose paper feed tray and paper cassette.

F. Maintenance is easy with print component units which are directly detachable, and they require no adjustment after reassembly.

2. SPECIFICATIONS

(1) Type Desktop page printer

(2) Printing method Electrophotography (single-component dry toner)

(3) Printing speed
 Cassette feed
 20 ppm (600 x 600 dpi or 300 x 300 dpi, A4 size)
 21 ppm (600 x 600 dpi or 300 x 300 dpi, Letter size)
 10 ppm (1,200 x 1,200 dpi, A4 & Letter size)

(4) First print time 16 seconds or less
 (A4 size by face-down print delivery from the paper cassette)
 Prestart by software command for 10 second first print

(5) Warm-up (WAIT) time Max. 1 minute at 20°C (68°F)

(6) Optical system
 Laser Semiconductor laser
 Output power : 5mW max.
 Wave length : 780 nm
 Scanning system Rotating six-faced polygon mirror

(7) Resolution
 Horizontal 600 dots/inch and 1,200 dots/inch
 Vertical 600 raster lines/inch and 1,200 raster lines/inch
(8) **Printing system**
- Photosensitive drum: OPC
- Charging: Charging Roller
- Exposure: Laser scanning system
- Development: Toner projection development system
- Paper feed: Cassette or manual feed
- Image transfer: Roller method
- Separation: Natural (utilizing a small drum radius), Static charge eliminator
- Fixing: Heated fixing roller
- Toner supply: Included in the replaceable EP-ED HC cartridge
- Life expectancy: 9,000 pages/cartridge

(9) **Paper**
- Cassette feed: Plain paper for Letter, Legal, A4 (A4 or letter size paper with the print density set at level 8 with 5% coverage, recommended: 60 g/m² - 105 g/m²)
- Multi-purpose Tray: Plain paper of 95 x 148 mm - 216 x 356 mm (recommended: 60 g/m² - 200 g/m²), overhead projector (OHP) film, postcards, label stock and envelopes (specified sizes)

(10) **Cassette (Tray 1)**
- Maximum load height: A4: 55 mm (500 sheets of 80 g/m² paper), Letter / Legal: 52 mm (500 sheets of 75 g/m² paper)
- Feedable paper type: 60 - 105 g/m²

(11) **Print delivery**
- Face-down or (face-up)

(12) **Print delivery tray capacity**
- Face-down: Approx. 500 sheets (80 g/m²)
- Face-up: Discharge only
Effective printing area

Effective printing area is referred to as an area within which is guaranteed the printing of all interface signal data on a hard copy without any omission. The tables below show the effective printable area for each paper size.

Table 1.1 Plain Paper

<table>
<thead>
<tr>
<th>SIZE</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>210.0</td>
<td>297.0</td>
<td>203.2</td>
<td>288.5</td>
<td>3.39 ± 1.0</td>
</tr>
<tr>
<td>Letter</td>
<td>215.9</td>
<td>279.4</td>
<td>207.4</td>
<td>270.9</td>
<td>4.23 ± 1.0</td>
</tr>
<tr>
<td>Legal</td>
<td>215.9</td>
<td>355.6</td>
<td>207.4</td>
<td>347.1</td>
<td>4.23 ± 1.0</td>
</tr>
<tr>
<td>B5 (ISO)</td>
<td>176.0</td>
<td>250.0</td>
<td>167.5</td>
<td>241.5</td>
<td>4.23 ± 1.0</td>
</tr>
<tr>
<td>Executive</td>
<td>184.2</td>
<td>266.7</td>
<td>175.7</td>
<td>258.2</td>
<td>4.23 ± 1.0</td>
</tr>
<tr>
<td>A5</td>
<td>148.0</td>
<td>210.0</td>
<td>139.5</td>
<td>201.5</td>
<td>4.23 ± 1.0</td>
</tr>
<tr>
<td>B6 (ISO)</td>
<td>125.0</td>
<td>176.0</td>
<td>116.5</td>
<td>167.5</td>
<td>4.23 ± 1.0</td>
</tr>
<tr>
<td>A6</td>
<td>105.0</td>
<td>148.0</td>
<td>96.5</td>
<td>139.5</td>
<td>4.23 ± 1.0</td>
</tr>
</tbody>
</table>

Table 1.2 Envelope

<table>
<thead>
<tr>
<th>SIZE</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM-10</td>
<td>104.8</td>
<td>241.3</td>
<td>96.3</td>
<td>232.8</td>
<td>4.23 ± 1.0</td>
</tr>
<tr>
<td>MONARCH</td>
<td>98.4</td>
<td>190.5</td>
<td>89.9</td>
<td>182.0</td>
<td>4.23 ± 1.0</td>
</tr>
<tr>
<td>DL</td>
<td>110.1</td>
<td>221.0</td>
<td>101.6</td>
<td>212.5</td>
<td>4.23 ± 1.0</td>
</tr>
<tr>
<td>C5</td>
<td>162.2</td>
<td>228.6</td>
<td>154.1</td>
<td>220.1</td>
<td>4.23 ± 1.0</td>
</tr>
<tr>
<td>B5 (ISO)</td>
<td>176.0</td>
<td>250.0</td>
<td>167.5</td>
<td>241.5</td>
<td>4.23 ± 1.0</td>
</tr>
</tbody>
</table>

(The sizes above are nominal sizes according to ISO.) An A4 sheet accepts 80 PICA-pitch characters (203.2mm).
(14) Standard interfaces
Automatic interface selection
• Centronics, Bi-directional parallel
• RS-232C serial
Baud rate : 150, 300,1200, 2400, 4800, 9600
19200, 38400, 57600, 115200bps
Stop bit : 1 bit
Start bit : 1 bit or 2 bits
Data length : 7 bits or 8 bits
Parity : Odd, Even, or None
Protocol : Xon/Xoff or DTR

(15) Emulation
Automatic emulation selection
• HP Laser Jet 5 (PCL Level 6)
• EPSON FX-850
• IBM Proprinter XL
• BR-Script level 2 (PostScript language emulation interpreter)
• HP-GL

(16) CPU
MB86832 100MHz (SPARC architecture)

(17) Resident fonts
75 scalable fonts and 12 bitmapped fonts

- HP Laser Jet 5, EPSON FX-850, IBM Proprinter XL

Scalable Fonts:

Intellifont Compatible Fonts:
• Albertville, Extrabold
• Antique Oakland, Oblique, Bold
• Brougham, Oblique, Bold, Bold Oblique
• Cleveland Condensed
• Connecticut
• Guatemala Antique, Italic, Bold, Bold Oblique
• Letter Gothic, Oblique, Bold
• Maryland
• Oklahoma, Oblique, Bold, Bold Oblique
• PC Brussels Light, Light Italic, Demi, Demi Italic
• PC Tennessee Roman, Italic, Bold, Bold Italic
• Utah, Oblique, Bold, Bold Oblique
• Utah Condensed, Oblique, Bold, Bold Oblique

Windows 3.1 Compatible Fonts:
• Tennessee Roman, Italic, Bold, Bold Italic
• Helsinki, Oblique, Bold, Bold Oblique
• BR Symbol
• W Dingbats
BR-Script Fonts:
• Atlanta Book, Book Oblique, Demi, Demi Oblique
• Copenhagen Roman, Italic, Bold, Bold Oblique
• Portugal Roman, Italic, Bold, Bold Oblique
• Calgary Medium Italic

Brother Original Fonts:
• Bermuda Script
• Germany
• San Diego
• US Roman

Bitmap Fonts (Portrait and Landscape):
• Letter Gothic 16.66 Medium, Italic, Bold, Bold Italic
• OCR-A
• OCR-B
BR-Script Level 2 Mode

Scalable Fonts:
- Atlanta Book, Book Oblique, Demi, Demi Oblique
- Brussels Light, Light Italic, Demi, Demi Italic
- Brougham, Oblique, Bold, Bold Oblique
- Helsinki, Oblique, Bold, Bold Oblique
- Helsinki Narrow, Oblique, Bold, Bold Oblique
- Copenhagen Roman, Italic, Bold, Bold Italic
- Portugal Roman, Italic, Bold, Bold Italic
- Tennessee Roman, Italic, Bold, Bold Italic
- Calgary Medium Italic
- BR Symbol
- BR Dingbats
- Albertville, Extrabold
- Antique Oakland, Oblique, Bold
- Cleveland Condensed
- Connecticut
- Guatemala Antique, Italic, Bold, Bold Italic
- Letter Gothic, Oblique, Bold
- Maryland
- Oklahoma, Oblique, Bold, Bold Oblique
- Utah, Oblique, Bold, Bold Oblique
- Utah Condensed, Oblique, Bold, Bold Oblique
- Bermuda Script
- Germany
- San Diego
- US Roman

(18) RAM: 8M bytes (expandable to 72M bytes with SIMMs)
(19) PCMCIA card slots: Two slots
- Right slot for Type I and II
- Left slot for Type I, II and III compatible for flash memory or HDD cards
(20) Power source:
- USA and Canada: AC 110 to 120 V, 50/60 HZ
- Europe and Australia: AC 220 to 240 V, 50/60 HZ
(21) Power consumption:
- Printing: 500 WH or less
- Stand-by: 90 WH or less
- Sleep: 25 WH
(22) Noise:
- Printing: 55 dB A or less
- Stand-by: 40 dB A or less
(23) Dimensions (W x H x D):
- With A4 paper cassette: 396 x 400 x 389 mm (15.6 x 15.7 x 15.3 inches)
- With Letter / Legal paper cassette: 396 x 452 x 389 mm (15.6 x 18.8 x 15.3 inches)
(24) Weight: Approx. 15 kg (33 lbs)
(25) Environmental conditions:
- Operating environment:
 - Temperature: 10 ~ 32.5°C
 - Relative humidity: 20 ~ 80%RH (No condensation allowed)
 - Air pressure: 71.0 ~ 101.3 kPa (0 ~ 2,500 m above sea level)
- Non-operating environment:
 - Temperature: 0 ~ 35°C
 - Relative humidity: 10 ~ 80%RH (No condensation allowed)
- Storage conditions:
 - Printer:
 - Temperature:
 - Normal (total storage time x 9/10):
 - 0 ~ 35°C
 - Severe (total storage time x 1/10):
 - High: 35°C ~ 60°C
 - Low: -20°C ~ 0°C
 - Temperature change (within 3 minutes):
 - High: 60°C → 15°C
 - Low: -20°C → 25°C
Relative humidity
Normal (total storage time x 9/10)
35 ~ 85%RH
Severe (total storage time x 1/10)
High
85 ~ 95%RH
Low
10 ~ 35%RH
Air pressure 71.0 ~ 101.3 kPa
Total storage time 0.5 years

• EP-ED HC cartridge

Temperature
Normal (2.45 years max.)
0 ~ 35°C
Severe (0.05 years max.)
High
35°C ~ 40°C
Low
-20°C ~ 0°C
Temperature change (within 3 minutes)
High
40°C → 15°C
Low
-20°C → 25°C
Relative humidity
Normal (2.45 years max.)
35 ~ 85%RH
Severe (0.05 years max.)
High
85 ~ 95%RH
Low
10 ~ 35%RH
Air pressure 71.0 ~ 101.3 kPa
Maximum total storage time:
2.5 years including used time

3. SAFETY INFORMATION

3.1 Laser Safety (110 ~ 120V Model only)

This printer is certified as a Class 1 laser product under the US Department of Health and Human Services (DHHS) Radiation Performance Standard according to the Radiation Control for Health and Safety Act of 1968. This means that the printer does not produce hazardous laser radiation.
Since radiation emitted inside the printer is completely confined within the protective housings and external covers, the laser beam cannot escape from the machine during any phase of user operation.
3.2 CDRH Regulations (110 ~ 120V Model only)

The Center for Devices and Radiological Health (CDRH) of the US Food and Drug Administration implemented regulations for laser products on August 2, 1976. These regulations apply to laser products manufactured from August 1, 1976. Compliance is mandatory for products marketed in the United States. The label shown below indicates compliance with the CDRH regulations and must be attached to laser products marketed in the United States.

![Figure 1.2](image)

Caution: Use of controls, adjustments or performance of procedures other than those specified in this manual may result in hazardous radiation exposure.

3.3 Additional Information

When servicing or adjusting the optical system of the printer, be careful not to place screwdrivers or other reflective objects in the path of the laser beam. Be sure to take off any personal accessories such as watches and rings before working on the printer. A reflected beam, though invisible, can permanently damage the eyes. Since the beam is invisible, the following label is attached to the inside of covers where danger of exposure to laser radiation exist.

![Figure 1.3](image)
4. PARTS OF THE PRINTER

4.1 External Views

<table>
<thead>
<tr>
<th>No.</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Upper cover</td>
</tr>
<tr>
<td>2</td>
<td>Control panel</td>
</tr>
<tr>
<td>3</td>
<td>MP tray</td>
</tr>
<tr>
<td>4</td>
<td>Tray 1</td>
</tr>
<tr>
<td>5</td>
<td>Power switch</td>
</tr>
<tr>
<td>6</td>
<td>PCMCIA card slots</td>
</tr>
<tr>
<td>7</td>
<td>Fan outlet port</td>
</tr>
<tr>
<td>8</td>
<td>Face-up print delivery port</td>
</tr>
<tr>
<td>9</td>
<td>Centronics interface connector</td>
</tr>
<tr>
<td>10</td>
<td>RS-232C interface connector</td>
</tr>
<tr>
<td>11</td>
<td>USB port</td>
</tr>
<tr>
<td>12</td>
<td>Duplex unit, Lower tray unit connector</td>
</tr>
<tr>
<td>13</td>
<td>Rating label</td>
</tr>
<tr>
<td>14</td>
<td>AC inlet</td>
</tr>
</tbody>
</table>

Figure 1.4
4.2 Cross Sectional View

Figure 1.5

1. Control panel
2. EP-ED HC cartridge
3. Photosensitive drum
4. Laser unit
5. Transfer unit
6. Face-down tray
7. Print-delivery path
8. Fixing unit
9. Low-voltage power supply assy
10. High-voltage power supply assy
11. Paper cassette (Tray 1)
12. Pick-up rollers
13. MP tray
14. Registration rollers
5. STORAGE AND HANDLING OF EP-ED HC CARTRIDGES

An EP-ED HC cartridge is influenced by the storage conditions even if it is sealed in its package, so its life depends on the way in which it is used or stored. EP-ED HC cartridges should be handled carefully.

5.1 Storage of Sealed EP-ED HC Cartridges

When storing sealed EP-ED HC cartridges in a warehouse or workshop, the storage conditions shown in (25) Environmental conditions on Page 1-5 must be met. Follow the instructions below:

1) Avoid direct sunlight.
2) Do not store cartridges on a surface that is subject to vibration.
3) Do not hit or drop the packages containing cartridges.
4) The cartridges should be stored horizontal when they are removed from the body (with their label side upside).
5) Avoid putting the cartridges near a CRT screen, a disk or a floppy disk (to keep their data from being destroyed).

5.2 Storage of Unsealed EP-ED HC Cartridges

Each EP-ED HC cartridge contains a photosensitive drum that has an organic photoconductor (OPC) which deteriorates when exposed to strong light. It also contains toner. The user, therefore, should be fully informed about the correct storage and handling of EP-ED HC cartridges.

(1) Storage requirements
1) Avoid places exposed to direct sunlight or near a window. Do not leave an EP-ED HC cartridge in a car in warm or hot weather even if it is in its storage box.
2) Avoid places with a too-high or too-cool temperature and/or humidity. Also avoid places exposed to sudden temperature or humidity changes (such as near an air conditioner outlet).
3) Avoid dusty places or places exposed to ammonia fumes or other harmful fumes.
4) Do not store an EP-ED HC cartridge in a temperature above 40°C.

(2) EP-ED HC cartridge life
The effective life of an EP-ED HC cartridge is 2.5 years from the date of manufacture (printed on the cartridge.) The expiry year and month (date of manufacture plus 2.5 years) is shown on the EP-ED HC cartridge box. An EP-ED HC cartridge used after the expiry may produce low-quality printing, so a cartridge should be used within the stated period.
CHAPTER II THEORY OF OPERATION

This chapter describes the printer functions, the relationship between the electrical systems and mechanical systems, and the timing of operations. Striped conduits () indicate mechanical linkages; solid thin arrows () appearing with a signal name indicate the transmission of single control signals and outlined thick arrows () indicate the transmission of groups of signals.

1. BASIC OPERATIONS

1.1 Mechanical Configuration

The printer functions can be divided into four blocks: the laser system, the image formation system, the paper pick-up/feed system and the control system.
1.2 Main Drive

The power necessary for driving the printer is supplied by the main motor, the paper feed motor and the laser unit motor.

The main motor is controlled by the main motor drive signal (MDRIVE) output from the main PCB, and the paper feed motor is controlled by the paper feed motor drive signal output from the main PCB, and the laser unit motor is controlled by the laser unit motor drive signal (SDRIVE) output from the main PCB.

Note: There are cases, in the following pages, that a main motor is referred to as a DC motor, but they are identical.
1.3 Basic Sequence of Operations

Timing for two consecutive prints on A4 paper.

<table>
<thead>
<tr>
<th></th>
<th>WAIT</th>
<th>STBY</th>
<th>PRINT</th>
<th>STBY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready lamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixing heater</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser unit motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper feed motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pick-up roller solenoid</td>
<td>0.18 sec</td>
<td>0.12 sec</td>
<td>1.50 sec</td>
<td>1.38 sec</td>
</tr>
<tr>
<td>Laser diode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration sensor</td>
<td></td>
<td></td>
<td>2.54 sec</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.3
In response to the print signal transmitted from the external device, the main PCB generates the drive signals (DATA, VOFF) for the laser diode and sends the signals to the laser unit.

The laser diode in the laser unit generates a laser beam modulated by DATA.

The modulated laser beam is aligned into a parallel beam by a collimator lens and a cylindrical lens and then brought to the scanning mirror which is rotating at a constant speed.

The laser beam reflected by the scanning mirror focuses on the photosensitive drum via the focusing lenses arranged in front of the scanning mirror.

The path of the beam coming through the focusing lenses is reflected by the reflective mirror.

As the scanning mirror rotates at a constant speed, the laser beam scans the photosensitive drum at a constant speed.

As the photosensitive drum rotates at a constant speed and the laser beam scans the drum, an image is formed on the drum.
3. IMAGE FORMATION SYSTEM

3.1 Outline

The image formation system is the main part of the printer. The print information, after input from the video controller circuit into the engine controller circuit as a TVDO signal, forms a toner image on the photosensitive drum.

Then the toner image is transferred onto the paper by the transfer charging roller. The image formation system is composed of the photosensitive drum the charging unit, the developing unit and the cleaning unit.

3.2 Printing Process

The major part of the image formation system is contained in the cartridge, as shown in Figure 2.5.

![Figure 2.5](image)

The cartridge used by the printer has a seamless photosensitive drum with the structure shown in Figure 2.6. The outer layer of the drum consists of an organic photoconductor (OPC); the base is aluminum.

The printing process can be divided into five major stages:

![Figure 2.6](image)

1. Electrostatic latent image formation stage
 Step 1 Primary charge (-)
 Step 2 Scanning exposure

2. Developing stage
 Step 3 Development
3. Transfer stage
 Step 4 Transfer (+)
 Step 5 Separation

4. Fixing stage
 Step 6 Fixing

5. Drum cleaning stage
 Step 7 Drum cleaning

3.2.1 Electrostatic latent image formation stage

This stage has two steps, which together produce a pattern of electrical charges on the photosensitive drum. At the end of the stage, negative charges remain in the unexposed “dark” area. Charges are absent from the “light” areas, where the laser beam struck (exposed) the drum surface. Since this image of negative charges on the drum is invisible to the eye, it is called an “electrostatic latent image”.

![Figure 2.7](image-url)

Figure 2.7

![Figure 2.8](image-url)

Figure 2.8
Step 1 Primary charge

As preparation for latent image formation, a uniform negative potential is applied to the photosensitive drum surface. The printer uses the charging method that directly charges the drum for the primary charge.

The primary charging roller consists of conductive rubber. In addition to DC bias, AC bias is applied to the primary charging roller to keep the potential on the drum surface uniform. This DC bias is changed with the developing DC bias. This charging method has advantages such as lower applied voltage, less ozone generation, etc., compared with the corona charge system.

Step 2 Scanning exposure

When the laser beam scans the drum surface, it causes the charge to be neutralized in the areas struck by the beam. Areas on the drum with no charge form the electrostatic latent image.
3.2.2 Developing stage

Development places particles of toner onto the areas of the drum that have been cleared of charge by the laser beam. This makes a visible image. This printer uses the toner projection development method with a single-component toner.

Step 3 Development

![Diagram of developing stage](image)

Figure 2.11

Note: The charges on the light areas on the photosensitive drum are shown as positive in this figure. Actually they are negative, but they are more positive than the developing cylinder and explanation is simplified by regarding them as positive.

As shown in Figure 2.11, the developing unit consists of a developing cylinder and rubber blade. The developing cylinder rotates around a fixed internal magnet. The single-component toner consists of magnetite and a resin binder, and is held to the cylinder by magnetic attraction. The toner is an insulator, and acquires a negative charge by friction due to the rotation of the cylinder.

The areas on the drum that were exposed to the laser beam have a higher potential (are less negative) than the negatively charged toner particles on the developing cylinder. When these areas approach the cylinder, the potential difference projects the toner particles onto them. This is called toner projection, and the latent image on the drum becomes visible.

![Diagram of voltage and potential](image)

Figure 2.12

An AC bias is applied to the developing cylinder to help project the toner particles to the drum surface and improve the contrast of the printed image. The center voltage of the AC bias (1600 Vp-p) varies with the DC bias voltage. The IMAGE DENSITY ADJUSTMENT signal (sent from the Engine CPU to the high-voltage power supply) changes the DC bias, and thus the potential difference between the cylinder and drum. This changes the density of the print.

This printer has a stirring mechanism to supply toner in the cartridge smoothly to the cylinder.
3.2.3 Transfer stage

In the transfer stage, the toner image is transferred from the drum surface to the paper.

Step 4 Transfer

![Diagram of transfer process]

A positive charge applied to the back of the paper attracts the negatively charged toner particles to the paper. The printer accomplishes transfer by using the charging roller method. Advantages compared with the corona transfer method are as follows:

- Low transfer voltage that is less than half that for corona transfer.
- Less ozone generation.
- The paper is supported by the transfer charging roller and photosensitive drum, so feed is more stable.

Reference:

If the image on the photosensitive drum is not completely transferred to the paper due to jamming, etc., the toner may adhere to the transfer charging roller. The printer removes the toner from the transfer charging roller by switching the transfer voltage between positive and negative in sequence. During wait, initial rotation, and last rotation, the printer sets the primary DC voltage to zero, and sets the charge on the drum to zero. In this case, the transfer voltage is made negative to remove the negatively-charged toner on the transfer charging roller to the drum. The transfer charging roller is thus cleaned.

Step 5 Separation

![Diagram of separation process]

The stiffness of the paper causes it to separate from the drum. (Curvature separation) To stabilize the paper feed and prevent small white circles from appearing in the printed image at low temperature and humidity, the charge on the back of the paper is reduced by the static charge eliminator after transfer.
3.2.4 Fixing stage

The toner image transferred to the paper in the transfer stage is held only by electrostatic attraction and slight physical adhesion, so even a light touch will smear the image. In the fixing stage, the toner image is fixed by heating the paper and applying pressure. This fuses the toner particles to the paper to make a permanent image.

Step 6 Fixing

![Diagram](image)

The upper roller surface is PFA-coated. The upper and lower roller surfaces are grounded via a diode to prevent the negative potential of the upper roller becoming higher than that of the lower roller, resulting in the toner being drawn to the lower roller, and adhering to the lower roller surface.

3.2.5 Drum cleaning stage

In the transfer stage, not all the toner is transferred to the paper. Some remains on the photosensitive drum. This residual toner is cleaned off in the drum cleaning stage so that the next print image will be clear.

Step 7 Drum cleaning

![Diagram](image)

Prior to the next printing, the residual toner on the drum surface is scraped away by the cleaning blade to clean the drum surface. The removed toner is collected in the cleaner container.
3.3 Operation

When the engine controller circuit receives a print signal (PRINT) or a pre-feed signal (PRFD) from the video controller circuit, the engine controller circuit drives the main motor to rotate the photosensitive drum.

After the drum surface is charged negatively by the primary charge roller, the laser beam modulated by a DATA signal scans the drum surface to form a latent image on the drum.

The latent image formed on the drum surface is converted into a visible image by the toner on the developing cylinder and then image is transferred onto the paper by the transfer roller unit. Then the residual toner is removed from the drum surface with the cleaner blade.

The cartridge also has a toner sensor. When the output from this sensor falls below a certain level, it warns that the EP-ED HC cartridge will be out of toner with an alarm.

![Diagram of the printer's components](image)

Figure 2.17
4. PAPER PICK-UP/FEED SYSTEM

4.1 Outline

If a tray1 paper pick-up roller solenoid drive signal (PUCL1) is input to the circuit while the paper feed motor is rotating, the paper pick-up solenoid comes on and the paper pick-up roller solenoid is engaged. As a result, the paper pick-up roller rotates to feed paper down to the photosensitive drum.

The paper position is controlled by the registration sensor so that the leading edge of the paper is aligned with the leading edge of the image on the photosensitive drum. After this operation, the paper is delivered to the face down tray via the fixing unit. Paper ejection is detected by the paper ejection sensor; if printed paper has not reached or not cleared the paper ejection sensor in a specified time, the printer judges that a paper jam has occurred. In this case a paper jam is noticed to the external devise by a status signal.

Figure 2.18
4.2 Cassette Feed

When the fixing rollers reach the specified temperature while a cassette with paper is in the printer, the READY lamp changes from flashing to lighting.

When the engine controller circuit receives PRNT or PRFD signal from the video controller circuit, the paper feed motor starts rotation. About 0.2 seconds later, the printer actuates the tray1 pick-up roller solenoid and the pick-up roller makes one rotation. This feeds paper to the photosensitive drum.

Timing chart for the pick-up one sheet

![Timing chart for the pick-up one sheet](image)

Figure 2.19
4.3 MP Tray Feed

The timing of the MP tray feed is identical to the timing of the cassette paper feed except for the following points:

1. The paper empty sensors are different.
 - Cassette feed: Tray1 paper empty sensor
 - MP tray feed: MP tray paper empty sensor

2. The pick-up roller solenoids are different.
 - Cassette feed: Tray1 pick-up roller solenoid
 - MP tray feed: MP tray pick-up roller solenoid

![Figure 2.20](image-url)
4.4 Paper Jam Detection

The printer has a registration sensor and a paper eject sensor at the paper outlet to detect whether the printed paper has been fed correctly. A paper jam is detected by whether the paper is present at the sensor at the check periods programmed in the engine CPU memory. If the engine CPU detects a paper jam, the main motor, paper feed motor and scanner motor is turned off immediately and the jam status is transmitted to the video controller circuit.

A paper jam is detected in any of following conditions:
1) Paper exists at the paper ejection sensor or the registration sensor when power is switched on. (JAM REAR or JAM INSIDE)
2) Paper has not reached the registration sensor within a specified time (JAM TRAYS).
3) Printed paper has not passed through the registration sensor within a specified time (JAM INSIDE (1)).
4) Printed paper has not reached the paper ejection sensor within a specified time (JAM INSIDE (2)).
5) Printed paper has not passed through the paper ejection sensor within a specified time (JAM REAR).

| Jam tray |
|------------------|------------------|
| **STBY** | **PRINT** |
| Main motor | |
| Pick-up solenoid | |
| Registration sensor | |
| Jam check | 3.00 sec Normal 3.00 sec Jam |

Figure 2.21

| Jam inside (1) |
|------------------|------------------|
| **STBY** | **PRINT** |
| Main motor | |
| Paper feed motor | |
| Registration sensor | |
| Jam check | 2.94 sec Normal 2.94 sec Jam |

Figure 2.22
If the stuck-full sensor detects a status that the paper is inside the printer for 20 seconds, it sends out the full signal.
CHAPTER III ELECTRICAL SYSTEM

Electric signal levels are expressed by “High” (approximate the supply voltage) or “Low” (approximate 0V). Signals with hyphen or slash, such as -FSRD or FSRD/, are low-active and signals without hyphen or slash, such as FSRD, are high-active signals.

1. MAIN PCB

1.1 Outline

The Main PCB consists of the Video Controller Circuit and the Engine Controller Circuit. The Video Controller Circuit performs the following functions.

1. Converts data received from an external device, such as a personal computer, through Centronics parallel interface or RS-232C serial interface into video data and transfers it to the Engine controller circuit.

2. Displays the current printer status in LED and LCD, and enables settings from the control panel.

The operation sequence of the printer controlled by a microprocessor in the Engine Controller Circuit. The Engine Controller Circuit outputs signals to drive the various loads on the laser diode, laser unit motor, main motor, etc. according to the print commands and image data from the external device.

Figure 3.1 Main PCB Block Diagram
1.2 Video Controller Circuit

(1) CPU block
CPU(#33) MB86832-100 manufactured by Fujitsu
RISC chip
Clock speed: 33.1768 Mhz (3 times faster than the base clock)
Appearance: 178-pin QFP
Voltage: 3V

(2) ASIC/Gate Array Block
- #19 MB87F1611(Fujitsu) - 240-pin QFP
 Controls the address decoder, timers and interfaces (Centronics and RS-232C).
- #19 MB87F1611(Fujitsu) - 240-pin QFP
 Controls HRC(High Resolution Control), GSC(Gray Scale Control) and
 economy mode, driven by 3V.
- #2 µPD65632GC - 100-pin QFP
 Controls the I/O ports and others.

(3) Font Card Block
- Font Card (option)
 The font card has a 64MB memory area and is controlled by the 16-bit bus.
 The card is supplied with 12V power in the slot 2 because the PCMCIA card
 requires 12V power supply when writing or erasing data.
 The address bus is buffered by LS245 and the data bus, is buffered by
 LCX245.

(4) Centronics/RS-232C interface block
- Centronics parallel interface
 Data transmission and reception are controlled by the MB87F1611 (#19).
- RS-232C
 Data transmission and reception are controlled by the MB87F1611 (#19).
 The ADM202JRN (#35) serves as driver/receiver.

(5) SIMM block
- SIMM (Single-Inline-Memory-Module) allows memory extension up to 72MB
- 2 SIMM sockets are available.
- SIMM should be of 72-pin type and its access time should be less than 70 ns.
- 12 types of SIMM (1MB, 2MB, 4MB, 8MB, 16MB and 32MB) can be combined:
 1MB MH25632BJ-7 (MITSUBISHI), HB56D25632B-7A (HITACHI)
 2MB MH51232BJ-7 (MITSUBISHI), HB56D51232B-7A (HITACHI)
 4MB MH1M32EJ-7 (MITSUBISHI), HB56A132BT-7A (HITACHI)
 8MB MH2M32EJ-7 (MITSUBISHI), HB56A232BT-7A (HITACHI)
 16MB THM324000BSG-60, -70, -80 (TOSHIBA)
 32MB THM328020BSG-60, -70, -80 (TOSHIBA)

Note: Fast page type and EDO type can be used together although it is not recommended.

1) The SIMMs have its printed marking on the PCB by silk screen: SLOT1 and SLOT2, respectively.

2) The attached Printer SIMM map shows the memory map for 4 SIMMs combined.
(6) ROM block
ROMs store the CPU control program and font data. ROMs are two 32Mbit masked ROMs.
Optional sockets are available for two 8Mbit EPROM (µPD27C8000DZ-120 - NEC or equivalent) for expansion.
ROM access time should be less than 120nsec.

(7) DRAM block
DRAMs are used for receiving buffer or working area of the CPU. The DRAM block contains four 16Mbit DRAMs, thus having 8MB memory capacity in total. The refreshing method is CBR (Cas Before Ras). DRAM access time should be less than 80nsec.
There are 4 CS terminals for CSROM#0 - CSROM#3. 2MB or 4MB is selectable from CSROM#0 - CSROM#2. If the both are selected, it will become one memory space and ROM#0 supports upto 16MB. CSROM#3 is a rest of the memory space with 256MB.

Figure 3.2 Memory map
Figure 3.4 Main PCB
1.3 Engine Controller Circuit

Components in the Circuit (refer to the next page)

A. Engine Control CPU
B. Low-Voltage Power Supply Connector
C. Fuser Unit Control
 C-1. Heater Drive Circuit
 C-2. Heater Temperature Input Signal
 C-3. Paper Eject Input Signal
D. Paper Feeder PCB Control Signals and Connector
E. Option Interface Circuit and Connector
F. High-Voltage Power Supply Control Circuit and Connector
G. Laser Unit Control
 G-1. Laser Unit Motor Control Circuit
 G-2. Laser Diode Drive PCB Control Circuit
H. Fan Motor Drive Circuit
I. Main Motor Control Circuit
J. Cover Open Detect Circuit
K. Safety Door Switch Circuit
2. **PAPER FEED DRIVE CIRCUIT**

A. Connector to Main PCB
B. Pick-up Motor Drive Circuit and Connector
C. Pick-up Solenoid Drive Circuit and Connector
D. Multi Purpose Tray Pick-up Solenoid Drive Circuit and Connector
E. Sensors
 E-1. Tray1 Paper Empty Sensor
 E-2. Multi Purpose Tray Paper Empty Sensor
 E-3. Regist Sensor
 E-4. Pre-Regist Sensor
 E-5. Paper Detect Sensor in Duplex Unit
F. Tray1 Paper Size Detect Switches

Refer to the next page.
Figure 3.7 Paper Feed/Size-SW PCB Circuit
3. **DISPLAY CIRCUIT**

3.1 **Outline**

The control panel of this printer has four LED lamps, one LCD display, and eight switches. The control panel is connected to the Main PCB and its functions are as follows:

1. The LCD shows the printer status and error message in alpha-numeric characters.
2. The LED lamps indicate the operating conditions of the printer.
3. The printing mode and LCD brightness can be changed by switches.

![Figure 3.8 Display Circuit](image)

3.2 **Operation**

Indicators on the control panel (LED lamps and LCD) are controlled by the video controller circuit. All the switch signals are input to the video controller circuit.

Signals Descriptions:

- **LED1 - LED4**: On-off control for the respective LED lamps. Illuminating when Low and extinguished when High.
- **PAD4 - PAD7**: LCD control signal.
- **LCDRS**: A signal to distinguish PAD4 - PAD7 into command and data.
- **LCDE**: A signal to start the operation.
- **SW1 - SW8**: Input signals from the switches. Going Low when each switch is pressed.
4. LOW-VOLTAGE POWER SUPPLY ASSY

4.1 Outline

The low-voltage power supply assy consists of the low-voltage generating block (hereinafter the DC block) and the heater drive circuit block to turn the heater on (hereinafter the AC block).

When the power switch (SW1) is turned on, AC power is supplied to the low-voltage power supply assy.

The DC block generates +5 VDC, and +24 VDC.

When the heater is turned on, AC power is supplied to the AC block under control of the heater on-off signal from the engine controller.

+24V output is reserved in the DC block, for the cooling fan for the low-voltage power supply assy.

4.2 Protection Functions

Each of the power supply circuits, +5V, and +24V, has a protection function to prevent the circuit from accident by automatically cutting off the power supply in the case of a over-voltage or over-current of the load.

When the cooling fan stops to rotating, an over-voltage protection or a short-circuit protection function is activated, and all the DC power supplies are cutoff.

In this case check and clear the cause on the load after turning the power switch (SW1) off, and then switch the power on again at least one minute after the power shut-down.
Figure 3.9 Low-Voltage Power Supply PCB Block Diagram
5. **HIGH-VOLTAGE POWER SUPPLY ASSY**

5.1 **Outline**

The High-Voltage Power Supply Assy supplies the high-voltage for the charging roller, the developer cylinder and the transfer roller according to the engine CPU’s control signals. The block diagrams are shown Fig 3.10 and 3.11.

5.2 **Operation of the Components of the High-Voltage Power Supply Assy**

1. **Primary charging**
 - When input signal/HV1AC gets the Low level, the primary high-voltage AC is applied to the primary charging roller. And when input signal/HV1DC gets the Low level, the primary high-voltage DC is applied to the primary charging roller. The primary high-voltage DC changes with developer bias DC according to values of the input signal DNSTY which is for print density adjustment.

2. **Developer bias**
 - When input signal/DBAC gets the Low level, the developer bias AC is applied to the developer cylinder. And when input signal/DBDC gets the Low level, the developer bias DC is applied to the developer cylinder. The developer bias DC changes according to values of the input signal DNSTY which is for print density adjustment, like the primary high-voltage DC.

3. **Transfer charging**
 - Transfer bias is controlled by the input signals HVT1 - 4 and HVTFB. When the input signal/HVT1 gets the Low level and the input signal HVT4 gets 3.7V, negative high-voltage is applied to the transfer roller. When the input signal/HVT2 gets the Low level, positive high-voltage is applied to the transfer roller. When the input signal/HVT3 gets the Low level, positive high-voltage about 1100 times that of the input signal HVT4 is applied to the transfer roller. The input signal HVTFB has voltage about 1/1100 times the positive voltage generated on the transfer roller. Once the engine CPU is informed of this voltage, the bias applied to the transfer roller can be known.
 - Note: The HVT2 signal generates high-voltage irrespective of the HVT4 signal.

4. **Toner sensing**
 - Voltage levels of the input signals TONER1 and TONER2 allow the engine CPU to check if the cartridge is set or not and if toner is empty. The TONER1 carries the voltage generated at the toner sensor and the TONER2 carries the developing bias output value.
Figure 3.10 High-Voltage Power Supply Block Diagram 1
Figure 3.11 High-Voltage Power Supply Block Diagram 2
CHAPTER IV MECHANICAL SYSTEM

■ Safety Precautions

To prevent the creation of secondary problems by mishandling, observe the following precautions during maintenance work.

(1) Always turn off the power before replacing parts or units. When having access to the power supply, be sure to unplug the power cord form the power outlet.

(2) Be careful not to lose screws, washers, or other parts removed for parts replacement.

(3) Be sure to apply grease to the teeth of gears.

(4) When using soldering irons and other heat-generating tools, take care not to damage the resin parts such as wires, PCBs, and covers.

(5) Before handling the PCBs, touch a metal portion of the equipment to discharge static electricity, or the electronic parts may be damaged due to the electricity charged in your body.

(6) When transporting PCBs, be sure to wrap them in conductive sheets such as aluminum foil.

(7) Be sure to reinsert self-tapping screws correctly, if removed.

(8) Unless otherwise specified, tighten screws to the torque values listed below.

• Tapping screws
 S tight M3 : 7kgf • cm
 B tight M3 x 6 : 5kgf • cm
 M3 x 8 : 7kgf • cm

• Stepped screws
 M3 : 7kgf • cm
 M4 : 10kgf • cm

(9) When connecting or disconnecting cable connectors, hold the connector bodies not the cables. If the connector has a lock, always slide the connector lock to unlock it.

(10) After repairs, check not only the repaired portion but also that the connectors and other related portions function properly before operation checks.

■ Notes

• On the next page is a disassembly order flow which helps you access the object component.

• Unless otherwise specified, the disassembled parts or components should be reassembled in the reverse order of removal.
■ PRINTER DISASSEMBLING PROCEDURE
PRINTER BODY

1.1 **Configuration**

![Diagram of Printer Body](image)

1.2 **Control Panel Unit**

 1. Release the Stopper.
 2. Remove the Lead wire cover.
 3. Remove the 3 screws from the bottom of the Control panel unit, and remove the 3 screws from the Interlock actuator.
 4. Pull out the Harness connector.

 Note: Carefully remove the Panel cover from the rib.

![Diagram of Control Panel Unit](image)
1.3 Toner Cartridge Lid

(1) Remove the supporter from the Toner cartridge lid.
(2) Push the right side of the Toner cartridge lid to release the boss.
(3) Hold the right side of the Toner cartridge lid and move it towards the left side.
(4) Push the left side of the Toner cartridge lid to release the boss.
(5) Remove the Toner cartridge lid from the Upper cover.

![Figure 4.3](image)

1.4 Side Cover L

(1) Release the lock by pinching the lever on the left top surface (A) and remove the cover by pulling it rearward (B).

![Figure 4.4](image)
1.5 Font Cover ASSY

(1) Remove the font cover ASSY by loosening the screw on the top and releasing the hooks on the bottom.

![Figure 4.5](image)

1.6 Upper Cover ASSY, Rear Cover ASSY

1.6.1 Upper cover ASSY, Rear cover ASSY

(1) Loosen the top left screw and 2 screws at the top of the Rear cover ASSY.
(2) Release the hook at the right side of the Upper cover ASSY and lift it upwards to remove.

Note: Pay attention to the Paper sensor actuator when removing the Upper cover ASSY.

The hook is released automatically by removing the Upper cover ASSY in the direction of the arrow.

![Figure 4.6](image)
(3) Loosen the 2 screws on the bottom of the Rear cover ASSY.

![Figure 4.7](image1)

(4) Disconnect the Paper eject sensor harness from the Paper eject sensor PCB ASSY.

![Figure 4.8](image2)

(5) Remove the Rear cover ASSY.
1.6.2 Changeover guide, Jam remove cover

(1) Open the jam remove cover by hooking your finger on 2 dents (A).
(2) Remove the jam remove cover with its center part opened by bending the arm of the boss both on sides (B) toward the front (C).
(3) Remove the changeover guide from the boss by bending the right hook (viewed from the rear) of the Rear cover ASSY (D), then remove the changeover guide (E).

Figure 4.9

1.7 Side Cover R

(1) Remove the screw and remove the Front cover.

Figure 4.10
(2) Remove the Side cover R by releasing the 4 hooks.
 Note: Before releasing the 4 hooks, remove the paper tray.

Figure 4.11

1.8 DC Fan Motor

(1) Remove the DC fan motor from the DC fan motor holder by loosening the 2 screws.
(2) Loosen the screws securing the Holder spacer and remove the entire DC fan motor holder.

Figure 4.12
1.9 Main PCB

(1) Loosen the 2 screws and remove the SIMM replace lid.

![Figure 4.13](image)

(2) Remove the 7 screws and the MIO box.

![Figure 4.14](image)
(3) Remove the PCB holder by loosening 10 screws from the PCB holder, 2 screws from the centronics connector and 2 screws RS-232C connector.

(4) Remove the SW panel harness 22P and the Paper feed flat cable 21P.

(5) Remove the DC fan motor harness 3P, the Fuser harness 4P, the Porigon harness 5P, the LSR flat cable 6P, the DC motor harness 5P, the HV harness 16P and the LV harness 8P.
(6) Remove 8 screws and the Main PCB ASSY.

Figure 4.17

1.10 Laser Unit

(1) Unplug the LSR flat cable connector (6P), and LSR harness connector (14P).
(2) Remove the beam from the chassis by loosening the screws.
(3) Remove the Laser unit from the chassis by loosening the screws.

Caution: Do not disassemble the Laser unit, it can be only adjusted at the factory only.

Figure 4.18

Figure 4.19
1.11 Cartridge Stopper ASSY

(1) Remove LSR harness 5P, the Paper eject sensor harness and DC fan motor harness from the cable clump.
(2) Remove the Duct by releasing the 2 hooks.
(3) Remove 3 M holders by loosening the screws.

(4) Remove the screw for the Laser fan motor and remove it.
(5) Remove the Laser flat cable form the ferrite core.
(6) Loosen 4 screws and remove the Laser unit mount plate in the direction of the arrow (the Ground leaf spring is also released at the same time.)

![Figure 4.20](image)

![Figure 4.21](image)
(5) Release the hook by bending the arm of the Cartridge stopper ASSY (A), slide the Cartridge stopper ASSY to the left (B) and the remove the Cartridge stopper ASSY (C).

Figure 4.22

1.12 Paper Feed Chassis Unit

(1) Pull out the unit by loosening the 8 screws (4 screws for front and 4 screws for bottom).

Figure 4.23

Note: When installing the Paper feed chassis unit, screw the left chassis of this Paper feed chassis unit, set the paper tray, displace the right chassis of this unit up to the paper tray and screw them.
(2) Remove the Paper hold front and the Paper hold rear by pushing the top of the Paper hold front and sliding it down.

Figure 4.24

(3) Release the left cartridge hold roller and remove the cartridge guide L (by loosening the screw and releasing the hook) then pull out feed flat cable 20P.

Figure 4.25

(4) Remove the Paper feed chassis unit.

Figure 4.26
1.13 Separation pad ASSY

(1) Release the hook and remove the Paper pick-up roller ASSY.
(2) Remove the Separation pad ASSY by pulling it out from the Paper feed guide upper.

(3) Remove the spring from the Separation pad ASSY.

1.14 MP PE Sub Actuator

(1) Pull out the actuator upward from the MP tray ASSY (pay attention to the hook because it is fragile).
1.15 P Feed /Size-SW PCB ASSY
 (1) Release 2 solenoid harness connectors.
 (2) Put the 3 chassis L tabs to their original position.
 (3) Remove 2 screws securing the Size-SW PCB ASY and remove P Feed/Size-SW PCB ASSY.

Figure 4.30

1.16 Size-Switch Spring
 (1) Pull out the Size-switch spring.

Figure 4.31

1.17 Regist sensor actuator
 (1) Remove the actuator by shifting it to the left from the chassis hole.
1.18 PE Sensor Actuator MP

(1) Pull out the actuator by shifting it to the right from the chassis hole.

![Figure 4.33](image)

1.19 Tray Sensor Holder

(1) Disengage the DU (Duplex) detection actuator from the hook and slide it to the outside.
(2) Loosen the screw and remove the holder by lifting it from the chassis.

- PE sensor actuator tray, PE actuator link, DU detection actuator
 1) Remove the PE actuator link from the PE sensor actuator tray.
 2) Remove the PE actuator link from the Tray sensor holder.
 3) Remove the PE sensor actuator tray from the Tray sensor holder.
 4) Remove the DU detection actuator from the Tray sensor holder.

![Figure 4.34](image)
1.20 Roller Holder

(1) Remove the Gear 28.
(2) Loosen and pull out the 2 screws.

Figure 4.35

1.21 Paper pick-up roller ASSY, Bearing

(1) Pull out the MP paper pick-up gear 35 and the Tray paper pick-up gear 35, from the Paper pick-up roller shafts.

Figure 4.36
(2) Loosen the bearing screws and pull out the paper pick-up rollers. *When only the Paper feed rollers are to be replaced, they can be replaced without removing the Paper feed unit (with the body assembled).*

![Figure 4.37](image)

(3) Pull out the Paper pick-up roller shafts.
(4) Remove the Paper pick-up roller collars from the Paper pick-up rollers ASSY.

![Figure 4.38](image)
1.22 Paper Pick-up Solenoid

(1) Remove each solenoid by loosening their screw.

![Figure 4.39]

1.23 Paper Feed Motor ASSY

(1) Pull out the Paper feed motor ASSY by loosening its 2 screws.

![Figure 4.40]
(2) For each ASSY, loosen a screw and pull out the bearing and the 6 washers. See the picture below.

Figure 4.41

1.24 MP Tray Cover

(1) Remove the MP tray cover from the Paper feed chassis unit by bending its hook on both sides.

Figure 4.42
(2) Remove the MP extension tray from the MP tray cover by bending the former.

Figure 4.43

1.25 MP Tray ASSY

(1) Remove the MP tray ASSY from the MP tray cover by bending its bosses.

Figure 4.44

(2) Remove the 2 fixing bushes.
(3) Remove the MP tray ASSY.

Figure 4.45
(4) Remove the MP tray ASSY from the MP release plate bending its bosses. The MP tray can be easily removed if it is slanted.

![Figure 4.46](image)

1.26 Paper Path Separation Plate, Paper Path Separation Film

(1) Remove them from the Paper feed guide lower by bending them.

![Figure 4.47](image)

1.27 Latch

(1) Remove the latch from the Paper feed guide upper by releasing the 2 hooks.

![Figure 4.48](image)
1.28 Fixing unit (for both 115V and 230V, the only difference is the Halogen heater)

(The fixing unit can be disassembled even after removing the Rear cover ASSY in section 1.6).

(1) Release the hook of the heater lead wire connector (2P) by pinching the connector and pull it out upward (to remove it from the low-voltage power supply ASSY).
(2) Pull out the Fixing PCB connector (4P) to the rear (A).
(3) Loosen the 2 screws which are securing from the rear, and remove the fixing unit by pulling it to the rear.

(4) Take off the Halogen heater by removing 2 screws at the both side, remove the Halogen heater.

Note: Do not use the electric driver as the Halogen heater is easy to break.
Do not touch the Halogen heater glass. If finger prints are on it, clean it with a cloth dampen with iPA alcohol.
When reassembling, make sure;
- The terminal of the heater lead wire connector (2P) should be placed over the terminal of the Halogen heater.
- The wire bridge between the Halogen heater and its terminal must be up.
(5) Remove the Thermistor lead wire connector (2P) of the Fixing PCB (see Figure 4.51).
(6) Detach the wire from the hooks of the Fixing unit chassis.
(7) Loosen 4 screws and remove the Fixing unit cover.

Note: When removing the Fixing unit cover, the Thermistor cleaner ASSY and the spring come off from the Fixing unit cover. Insert the Thermistor cleaner ASSY together with the spring into the correct position first, and start reassembling. See Figure 4.50b.

Figure 4.51

Figure 4.52
(8) Loosen a screw and remove the Fixing PCB ASSY.

![Figure 4.53](image)

(9) Release the left hook and take off the Paper delivery actuator.

![Figure 4.54](image)

(10) 1) Remove the retaining rings (on both sides).
2) Remove the HR gear, loosen the screw and remove the spring washer, remove the left and right HR bearings and the heat roller by sliding it.

![Figure 4.55](image)
3) Remove the Pressure roller spring and Pressure roller bearing on both sides, and the Pressure roller.

Note: Do not use the electric driver to loosen/secure the screw as the plastic bush is easy to break.

Figure 4.56

< Reassembly >

Using the Release spacer L & R may help to assemble springs.

1.29 Transfer Unit

1. Loosen a screw.
2. Release the 3 right hooks, (see Figure 4.57) lift the right part of the unit (A) and slide it to the right (B) (See Figure 4.56) to take off the left part from the main chassis L. Remove the transfer unit from the body by lifting the former.

Figure 4.57
(3) Open the transfer base hook and take off the left bearing (white) from the hook (A). Lift the left side (B), slide it to the left (C) and take off the roller shaft from the right bearing (black) (D).

(4) Remove the transfer roller ASSY.

Caution: Do not touch the sponge rubber roller when replacing the transfer roller (the roller with hand grease or clasped too strongly may result in poor printing quality).

Figure 4.58

1.30 DC Gear Holder ASSY

(1) Remove the DC motor connector, then remove the Paper delivery holder spring.
(2) Loosen the 4 screws and remove the DC gear unit from the chassis.
(3) Remove the Paper delivery gear ASSY, the gears, the Gear 48 spring, and the washer.
(4) Loosen the 3 screws and remove the DC motor ASSY from the gear holder.

Figure 4.59

Figure 4.60
1.31 PS Switch Wire, Remote Switch

(1) Pull out the PS switch wire from the remote switch and the switch attachment. Lift slightly the wires when pulling them out. This is in order to release the chassis caught at 2 places.

(2) Remove the remote switch from the chassis.

1.32 High-Voltage Power Supply PCB ASSY

(1) Release the 2 hooks at the bottom of the LV duct and slid it towards the left. Lift it upwards to remove.

(2) Remove the LV fan.
(3) Loosen the 2 screws and remove the connector.
(4) Hold the head of 2 resin spacers and lift this side of PCB (A).
(5) Slide the PCB to the opposite side (B).

![Figure 4.64](image1)

1.33 Low-Voltage Power Supply PCB ASSY

(1) Be sure to remove the heat insulation cover before removing the low-voltage power supply block.

![Figure 4.65](image2)
(2) Remove the PS switch wire.
(3) Loosen the 2 screws with the spring washer on the right side.
(4) Loosen the 4 screws with the spring washer on the Low-voltage power supply PCB.
(5) Disconnect the LV harness 8P.

1.34 **Toner Cartridge (EP-ED HC Cartridge)**

(1) Open the Toner cartridge lid and pull out the toner cartridge.
1.35 Paper Tray

(1) Release the roller holder fixing pawl and remove the roller holder by pulling it out upward.
(2) Remove the roller.
(3) Remove the Separation pad ASSY (pull it out by turning it).

![Figure 4.68](image)

![Figure 4.69](image)
CHAPTER V MAINTENANCE AND SERVICING

1. PERIODICAL REPLACEMENT PARTS

Periodical replacement parts are the parts to be replaced periodically to maintain product quality at same level (in other words the parts which would affect the product greatly if they lost their function even if they are not damaged or there is no change in their appearance.)

It is recommended to replace such parts on the occasion of a periodical service which is carried out before or after the specified number of sheets are printed, whichever more immediate to that time.

2. CONSUMABLE PARTS STANDARD ENDURANCE TABLE

The table below shows the suspected mean life (in terms of number of sheets) of the consumable parts, that is the parts which subject to deterioration or damage, should be replaced at least once during the period of warranty of the product only when the parts have such a failure.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Part No.</th>
<th>Qty</th>
<th>Service life</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fixing unit</td>
<td>UH1886001</td>
<td>1</td>
<td>100,000 pages</td>
<td>PART LIFE=100K</td>
</tr>
<tr>
<td></td>
<td>Fixing unit</td>
<td>UH1887001</td>
<td>1</td>
<td>100,000 pages</td>
<td>PART LIFE=100K</td>
</tr>
<tr>
<td>2</td>
<td>Paper pick-up roller ASSY 3</td>
<td>UH2821001</td>
<td>1</td>
<td>100,000 pages</td>
<td>PART LIFE=100K</td>
</tr>
<tr>
<td></td>
<td>Paper pick-up roller ASSY 5</td>
<td>UH1494001</td>
<td>1</td>
<td>100,000 pages</td>
<td>PART LIFE=100K</td>
</tr>
<tr>
<td>3</td>
<td>Separation pad ASSY</td>
<td>UH2393001</td>
<td>1</td>
<td>100,000 pages</td>
<td>PART LIFE=100K</td>
</tr>
<tr>
<td></td>
<td>Separation pad ASSY W</td>
<td>UH1500001</td>
<td>1</td>
<td>100,000 pages</td>
<td>PART LIFE=100K</td>
</tr>
<tr>
<td>4</td>
<td>Transfer roller ASSY A</td>
<td>UH1834001</td>
<td>1</td>
<td>100,000 pages</td>
<td>PART LIFE=100K</td>
</tr>
<tr>
<td>5</td>
<td>Laser unit</td>
<td>UH1885001</td>
<td>1</td>
<td>200,000 pages</td>
<td>PART LIFE=200K</td>
</tr>
</tbody>
</table>

Note: The above table shows only estimated value, so these value are subject to change without prior notice.

When every 100,000 pages are printed, the printer prompts “73 MAINTENANCE 1” on the LCD panel for the replacement of the Fixing unit, the Paper pick-up roller ASSY, the Separation pad ASSY and the Transfer roller ASSY A.

When every 200,000 pages are printed, the printer prompts “73 MAINTENANCE 2” on the LCD panel for the replacement of the Laser unit.

After replacing the periodical replacement parts, the parts life counter for them MUST BE RESET with the following procedure.

[Reset procedure]

(1) Take the printer off-line.
(2) Press CONT + SEL key.
(3) Press ▲ or ▼ to get “PART LIFE 100K RESET”, or “PART LIFE 200K RESET”.
(4) Press SET key to reset the parts life counter.
3. **LIST OF STANDARD TOOLS**

The standard tool set required for servicing the printer is as listed below. These tools are commercially available on the market.

Table 5.2

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tool box</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lead cable</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Feeler gauge</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Compression spring scale (0 - 1kg)</td>
<td>For checking cassette spring strength M4, M5</td>
</tr>
<tr>
<td>5</td>
<td>Phillips screwdriver</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Phillips screwdriver</td>
<td>M3, M5</td>
</tr>
<tr>
<td>7</td>
<td>Phillips screwdriver</td>
<td>M4, M5</td>
</tr>
<tr>
<td>8</td>
<td>Phillips screwdriver</td>
<td>M4, M5</td>
</tr>
<tr>
<td>9</td>
<td>Flat-blade screwdriver</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Precision flat-blade screwdriver</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Allen wrench set</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>File, fine</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Allen (hex) screwdriver</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Diagonal-cutting pliers</td>
<td>M4</td>
</tr>
<tr>
<td>15</td>
<td>Needle-nose pliers</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Pliers</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Snap-ring pliers, ext. 19 - 30 mm</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Crimper</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Tweezers</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ruler</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Mallet, plastic head</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Brush</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Penlight</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Bottle, plastic</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Solder</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Desoldering wick</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Oiler</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Jar, plastic</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Digital logic tester</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Digital multimeter</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Soldering iron</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Digital memory scope or syncroscope (100 MHz or over)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>ROM remover</td>
<td></td>
</tr>
</tbody>
</table>
4. LIST OF LUBRICANTS AND CLEANERS

Table 5.3

<table>
<thead>
<tr>
<th>No.</th>
<th>Material name</th>
<th>Components</th>
<th>Use</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alcohol ethyl (pure or denatured) or isopropyl (pure or denatured)</td>
<td>C₆H₅OH, (CH₃)₂CHOH</td>
<td>Cleaning of plastic, rubber, and external parts</td>
<td>Purchase locally</td>
</tr>
<tr>
<td>2</td>
<td>MEK (methyl ethyl ketone)</td>
<td>CH₃CO-C₂H₅</td>
<td>Cleaning for oil and toner stains</td>
<td>Purchase locally
Highly flammable; keep away from flame</td>
</tr>
<tr>
<td>3</td>
<td>Lubricating oil (silicon grease KS64F)</td>
<td>For fuser</td>
<td>Tool No. ZX-43D
Equivalent oil may be used</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lubricating oil (Moly kote EM-30L)</td>
<td>For drive mechanism</td>
<td>Tool No. ZX-43N
Equivalent oil may be used</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER VI TROUBLESHOOTING

1. INTRODUCTION

1.1 Initial Check

(1) Operating environment
Check if:
1) The source voltage stays within ±10% from the rating voltage shown on the rating label.
2) The printer is installed on a solid, level surface.
3) The room temperature is maintained between 10°C and 32.5°C. The relative humidity is maintained between 20% and 80%.
4) The printer is not exposed to ammonia fumes or other harmful gases.
5) The printer is not located in a hot or humid area (such as near water or a humidifier), in a cold place (such as outlet of an air conditioner), near open flames or in a dusty place.
6) The printer is not exposed to direct sunlight.
7) The room is well-ventilated.

(2) Printer paper
Check if:
1) A recommended type of print paper is being used (if the paper is too thick or too thin, or tends to curl, paper jams or paper feed problems may occur, or prints may be blurred).
2) The print paper is damped. [If so, use fresh paper, and check whether the print quality improve or not.]

(3) Consumables
Check if:
1) The message "16 TONER EMPTY" is not shown on the status display when a cartridge is installed in the printer. [If the message is displayed, replace the cartridge with a new one. If blank spots occur on prints, take out the EP-ED cartridge and slowly rock it to distribute the toner evenly.]

(4) Others
Check if:
The transfer guide and feed guide are clean. [If not, clean them with a damp cloth.]
Condensation:
When the printer is moved from a cold room into a warm room in cold weather, condensation may occur inside the printer, causing various problems as below:
1) Condensation on the optical surfaces such as the scanning mirror, lenses, the reflection mirror and the protection glass may cause the print image to be light.
2) If the photosensitive drum is cold, the electrical resistance of the photosensitive layer gets high, making it impossible to obtain a correct contrast in printing.
3) Condensation on the pick-up guide and feed guide plates may cause paper feed troubles.
If condensation has occurred, wipe the effected units or parts with a dry cloth.
If an EP-ED cartridge is unsealed soon after moved from a cold room to a warm room, condensation may occur inside the cartridge, which may cause incorrect image. Instruct the user to allow the cartridge to come to room temperature before unsealing it. This will take one to two hours.
1.2 Basic Procedure

If a malfunction or incorrect print is appeared, make an initial check, then follow the basic procedure below:
(1) Check the status display. If any message is shown, see Section 4 for troubleshooting.
(2) If an incorrect image is found, see Section 3.1 to determine the defect type and Section 3.2 for image troubleshooting.

2. TEST PRINTING AND MECHANICAL CHECK

2.1 Test Printing

If an image problem occurs, follow the procedure below to produce a test print.
1) Enter the offline mode.
2) Press the SHIFT and TEST switches simultaneously, so the printer enters the test print mode.
3) Press the ▲ or ▼ switch to appear the message "TEST PRINT" then press the SET switch.

The message "05 TEST PRINT" will appear on the status display of the control panel and the DATA lamp will come on. Then, the printer will produce the test print.
4) Determine the image trouble type and see Section 3 for troubleshooting.

Figure 6.1
3. IMAGE DEFECTS

3.1 Image Defect Examples

I-1 Light
I-2 Dark
I-3 Completely blank
I-4 All black

I-5 Polka dots
I-6 Dirt on back of paper
I-7 Black vertical streaks
I-8 Black and blurred vertical stripes

I-9 Black and thin horizontal streaks
I-10 Black and blurred horizontal stripes
I-11 Dropout
I-12 White vertical streaks

I-13 Faulty registration
I-14 Poor fixing

Figure 6.2
3.2 Troubleshooting Image Defects

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toner shortage</td>
<td>1</td>
<td>Does printed image improve when the EP-ED HC cartridge is replaced?</td>
<td>Yes</td>
<td>Replace EP-ED HC cartridge.</td>
</tr>
<tr>
<td>ECONOMY mode</td>
<td>2</td>
<td>Is the ECONOMY mode active?</td>
<td>Yes</td>
<td>Cancel the ECONOMY mode.</td>
</tr>
<tr>
<td>Printing density setting</td>
<td>3</td>
<td>Does printed image improve when printed density setting is changed on the control panel?</td>
<td>Yes</td>
<td>Adjust the proper setting on the control panel.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>During a printing, open the toner cartridge lid in the printer and pull out the EP-ED HC cartridge. Open the drum shutter of the EP-ED HC cartridge and check the toner image on the drum. Is the toner image before transfer is light?</td>
<td>Yes</td>
<td>Go to the Step 9.</td>
</tr>
<tr>
<td>Paper failure</td>
<td>5</td>
<td>Does the print quality improve when fresh paper is used?</td>
<td>Yes</td>
<td>Use recommended paper.</td>
</tr>
<tr>
<td>Transfer roller failure</td>
<td>6</td>
<td>Does the print quality improve when print is made with transfer roller changed?</td>
<td>Yes</td>
<td>Clean the transfer roller [Use dry lint-free paper (producing little paper dust) to clean the transfer roller. Never use solvents] and, if dirt subsists, replace the transfer roller assy.</td>
</tr>
<tr>
<td>Transfer input signal error</td>
<td>7</td>
<td>Do the pins 7 and 8 of the connector P6 on the main PCB have the following value respectively when a sheet of paper is fed from the MP tray? P6-7 pin (HVT2) --- Change in voltage from 15V approx. to 0V about 1 second after paper feeding. P6-8 pin (HVT3) --- Change in voltage from 9V approx. to 0V just when the voltage at the 7 pin changes from 0V to 15V.</td>
<td>No</td>
<td>Replace the main PCB assy or the harness.</td>
</tr>
<tr>
<td>Dirt on power supply terminal</td>
<td>8</td>
<td>Clean the transfer roller right end bearing, the check continuity between the transfer roller power supply spring and the terminal of the high-voltage transfer unit. Is there continuity?</td>
<td>No</td>
<td>Clean the contact to assure the continuity.</td>
</tr>
<tr>
<td>Failure in the transfer high-voltage circuit</td>
<td>8</td>
<td></td>
<td>Yes</td>
<td>Replace the high-voltage power supply assy.</td>
</tr>
<tr>
<td>Insufficient LD light</td>
<td>9</td>
<td>Does print quality improve when the laser unit is improved?</td>
<td>Yes</td>
<td>Replace the laser unit or the harness.</td>
</tr>
</tbody>
</table>

Continued to the following page
<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development input signal error</td>
<td>10</td>
<td>Do the pins 3, 4 and 5 of the connector P6 on the main PCB have the following value respectively when a sheet of paper is fed from the MP tray? P6-3 pin (DBAC) --- Change in voltage from 6V approx. to 0V just when a sheet of paper is fed from the registration unit. P6-4 pin (DBDC) --- Change in voltage from 9V approx. to 0V just when a sheet of paper is fed from the registration unit. P6-5 pin (DNSTY) --- Change in voltage to 2.5V just when a sheet of paper is fed.</td>
<td>No</td>
<td>Replace the laser unit or the harness.</td>
</tr>
<tr>
<td>Dirt on power supply terminal</td>
<td>11</td>
<td>Is there any dirt on the cartridge side development terminal of the transfer unit and on the terminal of the high-voltage power supply development unit? (is there continuity between them?)</td>
<td>No</td>
<td>Clean the contacts to assure the continuity.</td>
</tr>
<tr>
<td>Failure in the development high-voltage circuit</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Replace the high-voltage power supply PCB assy.</td>
</tr>
</tbody>
</table>

I-2 Dark

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density setting</td>
<td>1</td>
<td>Does printed image improve when density setting is changed on the control panel?</td>
<td>Yes</td>
<td>Adjust the proper setting on the control panel.</td>
</tr>
<tr>
<td>Dirt on the grounding terminal</td>
<td>3</td>
<td>Does printed image improve when continuity is improved by cleaning the EP-ED HC cartridge grounding terminal and the printer unit grounding terminal?</td>
<td>Yes</td>
<td>Clean the contacts to assure the continuity.</td>
</tr>
<tr>
<td>Charging input signal error</td>
<td>4</td>
<td>Do the pins 1, 2 and 5 of the connector P6 on the main PCB have the following value respectively when a sheet of paper is fed from the MP tray? P6-1 pin (HV1AC) --- Change in voltage from 6V approx. to 0V just when a sheet of paper is fed. P6-2 pin (HV1DC) --- Change in voltage from 9V approx. to 0V just when a sheet of paper is fed. P6-5 pin (DNSTY) --- Change in voltage to 2.5V just when a sheet of paper is fed.</td>
<td>No</td>
<td>Replace the main PCB assy or the harness.</td>
</tr>
<tr>
<td>Dirt on power supply terminal</td>
<td>5</td>
<td>Is there any dirt on the cartridge side charging terminal of the transfer unit and on the terminal of the high-voltage power supply charging unit? (is there continuity between them?)</td>
<td>No</td>
<td>Clean the terminal to assure the continuity.</td>
</tr>
<tr>
<td>Failure in the charging high-voltage circuit</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Replace the high-voltage power supply PCB assy.</td>
</tr>
</tbody>
</table>
I-3 Completely blank

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Development input signal error | 2 | Do the pins 3, 4 and 5 of the connector?
P6 on the main PCB have the following value respectively when a sheet of paper is fed from the MP tray?
P6-3 pin (DBAC) --- Change in voltage from 6V approx. to 0V just when a sheet of paper is fed from the registration unit.
P6-4 pin (DBDC) --- Change in voltage from 9V approx. to 0V just when a sheet of paper is fed from the registration unit.
P6-5 pin (DNSTY) --- Change in voltage to 2.5V just when a sheet of paper is fed. | No | Replace the main PCB assy or the harness. |
| Failure in power supply terminal | 3 | Is there any dirt on the cartridge side development terminal of the transfer unit and on the terminal of the high-voltage power supply development unit? (is there continuity between them?) | No | Clean the terminal to assure the continuity.|
| LD failure | 4 | Does print quality improve when the laser unit is improved? | Yes | Replace the laser unit or the harness. |
| Failure in development high-voltage circuit | 4 | Does print quality improve when the laser unit is improved? | No | Replace the high-voltage power supply PCB assy.|

I-4 All black

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam detection error</td>
<td>1</td>
<td>Is the printer hung up with the PRINT message remaining on the display even after a printing when only a copy is printed?</td>
<td>Yes</td>
<td>Replace the laser unit or the harness.</td>
</tr>
</tbody>
</table>
| Charging input signal error | 3 | Do the pins 1 and 2 of the connector P6 on the main PCB have the following value respectively when a sheet of paper is fed from the MP tray?
P6-1 pin (HV1AC) --- Change in voltage from 6V approx. to 0V just when a sheet of paper is fed.
P6-2 pin (HV1DC) --- Change in voltage from 9V approx. to 0V just when a sheet of paper is fed. | No | Replace the main PCB assy or the harness. |
| Dirt on power supply terminal | 4 | Is there any dirt on the cartridge side charging terminal of the transfer unit and on the terminal of the high-voltage power supply charging unit? (is there continuity between them?) | No | Clean the contact to assure the continuity.|
| Failure in the charging high-voltage circuit | 4 | Is there any dirt on the cartridge side charging terminal of the transfer unit and on the terminal of the high-voltage power supply charging unit? (is there continuity between them?) | Yes | Replace the high-voltage power supply PCB assy and, if the problem is not resolved, replace the laser unit or the harness. |
I-5 Polka dots

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure in static-charge eliminator</td>
<td>1</td>
<td>Is there any dirt on the static-charge eliminator?</td>
<td>Yes</td>
<td>Clean the static-charge eliminator.</td>
</tr>
<tr>
<td>Static-charge eliminator grounding failure</td>
<td>2</td>
<td>Is there continuity between the static-charge eliminator and the chassis?</td>
<td>Yes</td>
<td>Ensure the grounding of the static-charge eliminator.</td>
</tr>
<tr>
<td>Dirt on the transfer roller</td>
<td>3</td>
<td>Does print quality improve when the transfer roller is replaced?</td>
<td>Yes</td>
<td>Clean the transfer roller [Use dry lint-free paper (producing little paper dust) to clean the transfer roller. Never use solvents] and, if the dirt remains, replace the transfer roller assy.</td>
</tr>
</tbody>
</table>

I-6 Dirt on back of paper

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirt on the PF guide</td>
<td>1</td>
<td>Is there any dirt on the back of the paper feed guide and the jam remove cover near the static-charge eliminator?</td>
<td>Yes</td>
<td>Clean the PF guide or the jam remove cover.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Open the toner cartridge lid in the printer, pull out the EP-ED HC cartridge and remove the paper in the printer. Is there already dirt on the back of the sheet thus removed?</td>
<td>No</td>
<td>Go to Step 6.</td>
</tr>
<tr>
<td>Dirt on the transfer roller</td>
<td>3</td>
<td>Is there any dirt on the transfer roller?</td>
<td>Yes</td>
<td>Clean the transfer roller and, if the dirt remains, replace the transfer roller assy.</td>
</tr>
<tr>
<td>Transfer input signal error</td>
<td>4</td>
<td>Does the voltage at the 6 pin (HVT1) of the connector P6 on the main PCB change from 9V to 0V for about 0.8 seconds?</td>
<td>No</td>
<td>Replace the main PCB assy or the harness.</td>
</tr>
<tr>
<td>Dirt on power supply terminal</td>
<td>5</td>
<td>Clean the transfer roller right end bearing, the check continuity between the transfer roller power supply spring and the terminal of the high-voltage transfer unit. Is there continuity?</td>
<td>No</td>
<td>Clean the contact to assure the continuity.</td>
</tr>
<tr>
<td>Failure in the transfer high-voltage circuit</td>
<td>6</td>
<td>Are the upper and lower rollers of the fixing unit securely connected to the chassis via the diode?</td>
<td>No</td>
<td>Ensure the grounding.</td>
</tr>
<tr>
<td>Dirt the fixing guide</td>
<td>7</td>
<td>Is there any dirt on the fixing unit inlet guide?</td>
<td>Yes</td>
<td>Replace the fixing unit.</td>
</tr>
</tbody>
</table>
I-7 Black vertical streaks or Blurred vertical line

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP-ED HC cartridge</td>
<td>1</td>
<td>During a printing, open the toner cartridge lid in the printer and pull out the EP-ED HC cartridge. Open the drum shutter of the EP-ED HC cartridge and check the toner image on the drum. Are there vertical stripes on the drum?</td>
<td>Yes</td>
<td>Replace the EP-ED HC cartridge.</td>
</tr>
<tr>
<td>Fixing unit damaged</td>
<td></td>
<td></td>
<td>No</td>
<td>Replace the fixing unit.</td>
</tr>
</tbody>
</table>

I-9 Black and thin horizontal streaks

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam detection error</td>
<td>1</td>
<td></td>
<td></td>
<td>Replace the laser unit or the harness and, if the problem is not resolved, replace the main PCB assy.</td>
</tr>
</tbody>
</table>

I-10 Black and blurred horizontal stripes

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum or charging roller failure</td>
<td>1</td>
<td>Do stripes appear at 95 mm or 38 mm interval?</td>
<td>Yes</td>
<td>Replace the EP-ED HC cartridge.</td>
</tr>
<tr>
<td>Fixing unit failure</td>
<td>2</td>
<td>Do stripes appear at 80 mm interval?</td>
<td>Yes</td>
<td>Replace the fixing unit.</td>
</tr>
</tbody>
</table>
I-11 Dropout

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper failure</td>
<td>1</td>
<td>Is recommended paper used?</td>
<td>No</td>
<td>Use recommended paper.</td>
</tr>
<tr>
<td>Paper soaked</td>
<td>2</td>
<td>Is paper soaked?</td>
<td>Yes</td>
<td>Store the paper in packing paper to keep it from soaking.</td>
</tr>
<tr>
<td>Transfer roller failure</td>
<td>4</td>
<td>Is there any dirt on the transfer roller or is it deformed?</td>
<td>Yes</td>
<td>Clean or replace the transfer roller assy.</td>
</tr>
<tr>
<td>Transfer input signal error</td>
<td>5</td>
<td>Do the pins 7 and 8 of the connector P6 on the main PCB have the following value respectively when a sheet of paper is fed from the MP tray? P6-7 pin (HVT2) --- Change in voltage from 15V approx. to 0V about 1 second after a sheet of paper is fed. P6-8 pin (HVT3) --- Change in voltage from 9V approx. to 0V when the voltage at the pin 7 changes from 0V to 15V.</td>
<td>No</td>
<td>Replace the main PCB assy or the harness.</td>
</tr>
<tr>
<td>Dirt on power supply terminal Failure in the transfer high-voltage circuit</td>
<td>6</td>
<td>Clean the transfer roller right end bearing, the check continuity between the transfer roller power supply spring and the terminal of the high-voltage transfer unit. Is there continuity?</td>
<td>No</td>
<td>Clean the contact to assure the continuity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Replace the high-voltage power supply PCB assy.</td>
</tr>
</tbody>
</table>

I-12 White vertical streaks

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toner bias</td>
<td>1</td>
<td>Do white vertical stripes appear like a band?</td>
<td>Yes</td>
<td>Rock the cartridge, set it again in the printer and check again the print quality.</td>
</tr>
<tr>
<td>Drum damage</td>
<td>2</td>
<td>Does print quality improve when the EP-ED HC cartridge is replaced?</td>
<td>Yes</td>
<td>Replace the EP-ED HC cartridge.</td>
</tr>
<tr>
<td>Transfer roller failure</td>
<td>3</td>
<td>Is the transfer roller damaged or deformed?</td>
<td>Yes</td>
<td>Replace the transfer roller assy.</td>
</tr>
<tr>
<td>Dirt on the reflecting mirror</td>
<td>4</td>
<td>Is the problem solved when the laser unit is replaced?</td>
<td>Yes</td>
<td>Clean the reflecting mirror with a cleaning tip or replace the laser unit.</td>
</tr>
</tbody>
</table>
I-13 Faulty registration

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top margin setting error</td>
<td>1</td>
<td>Does self test printing have no problem?</td>
<td>Yes</td>
<td>Check again the top margin setting in the printing data.</td>
</tr>
<tr>
<td>Paper load in the cassette</td>
<td>2</td>
<td>Is over-amount of paper than specified load on the cassette?</td>
<td>Yes</td>
<td>Reduce the paper load below the specified limit.</td>
</tr>
<tr>
<td>Paper failure</td>
<td>3</td>
<td>Does print quality improve when recommended paper is used?</td>
<td>Yes</td>
<td>Use recommended paper.</td>
</tr>
<tr>
<td>Improper Y offset setting</td>
<td>5</td>
<td>Does print quality improve when Y offset setting is changed?</td>
<td>Yes</td>
<td>Adjust Y offset setting to an appropriate value.</td>
</tr>
<tr>
<td>Jam remove cover failure</td>
<td>6</td>
<td>Is the jam remove cover deformed?</td>
<td>Yes</td>
<td>Replace the jam remove cover.</td>
</tr>
<tr>
<td>Failure in regist sensor actuator motion</td>
<td>7</td>
<td>Does the regist sensor actuator operate smoothly?</td>
<td>No</td>
<td>Reassemble the actuator and, if the problem is not resolved, replace the actuator.</td>
</tr>
<tr>
<td>Regist sensor failure</td>
<td>8</td>
<td>Is the voltage at the pin 5 of the connector P3 of the main PCB 5V when no paper passes and 0V when paper passes?</td>
<td>No</td>
<td>Replace the paper feed/size-sw PCB assy or the harness and, if the problem remains, replace the main PCB assy.</td>
</tr>
</tbody>
</table>

I-14 Poor fixing

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixing unit release spacer not removed</td>
<td>1</td>
<td>Is the fixing unit release spacer removed?</td>
<td>No</td>
<td>Remove the fixing unit release spacer.</td>
</tr>
<tr>
<td>MEDIA TYPE setting</td>
<td>2</td>
<td>Is the MEDIA TYPE set to TRANSPARENCY?</td>
<td>Yes</td>
<td>Set the MEDIA TYPE to REGULAR or THICK PAPER.</td>
</tr>
<tr>
<td>Paper failure</td>
<td>3</td>
<td>Is thick paper over than 36lb (135g/m²) used?</td>
<td>Yes</td>
<td>Instruct the user to use the paper whose thickness is less than the recommended value.</td>
</tr>
<tr>
<td>Thermistor failure</td>
<td>4</td>
<td>Is the voltage at the pin 3 of the connector P11 of the main PCB is controlled within 1.80 ± 0.10V during continuous printing?</td>
<td>No</td>
<td>Replace the fixing unit.</td>
</tr>
</tbody>
</table>

Paper feed roller failure

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixing unit failure</td>
<td>4</td>
<td>Is the voltage at the pin 3 of the connector P11 of the main PCB is controlled within 1.80 ± 0.10V during continuous printing?</td>
<td>Yes</td>
<td>Replace the fixing unit.</td>
</tr>
</tbody>
</table>
4. TROUBLESHOOTING OF MALFUNCTIONS

M-1 No DC power supplied

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCBs</td>
<td>1</td>
<td>Does any PCB have the short circuit between +24V and 0V, +5V and 0V or +24V and +5V?</td>
<td>Yes</td>
<td>Replace the PCB having the short circuit.</td>
</tr>
<tr>
<td>Low-voltage power supply PCB</td>
<td>2</td>
<td>Is the voltage of P101-8 in the low-voltage power supply PCB connector 0V?</td>
<td>Yes</td>
<td>Replace the low-voltage power supply PCB assy.</td>
</tr>
<tr>
<td>Main PCB, LV harness, DC fan motor</td>
<td></td>
<td></td>
<td>No</td>
<td>Replace the main PCB assy, the LV harness or the DC fan motor.</td>
</tr>
</tbody>
</table>

M-2 Malfunction of LCD display on the control panel.

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD module</td>
<td>1</td>
<td>Does the voltage of the following signals vary to 5V or 0V when the LCD displays are changed through switch operations? (Check following signals using the digital memory scope with the trigger function for this check)</td>
<td>Yes</td>
<td>Replace the control panel unit.</td>
</tr>
<tr>
<td>Control panel PCB</td>
<td></td>
<td></td>
<td>No</td>
<td>Replace the main PCB assy, the switch flat cable or the control panel unit.</td>
</tr>
<tr>
<td>Switch flat cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M-3 Malfunction of control panel LED lamps.

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED lamps</td>
<td>1</td>
<td>Does the voltage of the following signals stay 0V while the "04 SELF TEST" is displayed after switching the power on and stay 5V for about 0.5 seconds after the message goes off? (Do the LED lamps turn on and off in response to the signal levels of 0V and 5V?)</td>
<td>Yes</td>
<td>Replace the control panel unit.</td>
</tr>
<tr>
<td>Control panel PCB</td>
<td></td>
<td></td>
<td>No</td>
<td>Replace the main PCB assy or the switch flat cable.</td>
</tr>
<tr>
<td>Switch flat cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signal Connections

- **Panel PCB**: P1-14, P1-10, P1-16, P1-12, P1-6, P1-8, P1-4, P1-3, P1-2, P1-1
- **Main PCB**: P1-14, P1-10, P1-16, P1-12, P1-6, P1-8, P1-4, P1-3, P1-2, P1-1
- **LCD**: 7, 8, 9, 10, 4, 6
- **Signal**: LED1(ON LINE), LED2(READY), LED3(DATA), LED4(ALARM)
M-4 Malfunction of control panel switches

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mis-operation</td>
<td>1</td>
<td>Are the switches operated according to the operation manual?</td>
<td>No</td>
<td>Operate the switches correctly following the operation manual.</td>
</tr>
<tr>
<td>Switch Control panel PCB</td>
<td>2</td>
<td>When a switch is pressed, does the voltage of the following signals change from 5V to 0V?</td>
<td>Yes</td>
<td>Replace the Main PCB assy.</td>
</tr>
<tr>
<td>Switch flat cable</td>
<td></td>
<td></td>
<td>No</td>
<td>Replace the control panel unit or the switch flat cable.</td>
</tr>
<tr>
<td>Main PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control panel PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch flat cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M-5 "12 COVER OPEN" is displayed even if the upper cover is closed

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper cover</td>
<td>1</td>
<td>Does the upper cover hook press the actuator of the interlock switch on the main PCB correctly when upper cover is closed?</td>
<td>No</td>
<td>Replace the upper cover assy.</td>
</tr>
<tr>
<td>Main PCB</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Replace the main PCB assy.</td>
</tr>
</tbody>
</table>

M-6 "CHECK XX TRAY" is displayed even if a paper-loaded cassette is mounted (or even if a paper is set on MP tray) XX is MP/T1/T2

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mis-operation</td>
<td>1</td>
<td>Is the paper feed mode set correctly?</td>
<td>No</td>
<td>Set paper feed mode correctly.</td>
</tr>
<tr>
<td>Actuator</td>
<td>2</td>
<td>Does the actuator for the paper empty sensor operate smoothly?</td>
<td>No</td>
<td>Reassemble or replace the actuator.</td>
</tr>
<tr>
<td>Paper empty sensor</td>
<td>3</td>
<td>Does the voltage of P5-3 (or P5-14) in the Paper feeder PCB connector rise from 0V to 5V when the paper empty sensor is covered?</td>
<td>No</td>
<td>Replace the paper feed/size-sw PCB assy or feed flat cable.</td>
</tr>
<tr>
<td>Feed flat cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper feed flat cable</td>
<td>4</td>
<td>Does the voltage of P3-3 (or P3-14) in the main PCB connector rise from 0V to 5V when the paper empty sensor is covered?</td>
<td>No</td>
<td>Replace the feed flat cable.</td>
</tr>
<tr>
<td>Main PCB</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Replace the main PCB assy.</td>
</tr>
</tbody>
</table>
M-7 "14 NO CARTRIDGE" is displayed

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transfer unit electrode</td>
<td>2</td>
<td>Is the electrode of the transfer unit dirty?</td>
<td>Yes</td>
<td>Clean the electrode of the transfer unit.</td>
</tr>
<tr>
<td>High-voltage power supply PCB</td>
<td>3</td>
<td>Is the voltage of P4-13 in the high-voltage power supply PCB connector higher than that of P4-11 over 2.5V?</td>
<td>Yes</td>
<td>Replace the high-voltage power supply PCB assy.</td>
</tr>
<tr>
<td>HV harness Main PCB</td>
<td>4</td>
<td>Is the voltage of P6-13 in the main PCB connector higher than that of P6-11 over 2.5V?</td>
<td>Yes</td>
<td>Replace the HV harness.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>Replace the main PCB assy.</td>
</tr>
</tbody>
</table>

M-8 "16 TONER EMPTY" is displayed

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP-ED HC cartridge</td>
<td>1</td>
<td>Take the EP-ED HC cartridge out of the printer and rock it to distribute the toner evenly. When the cartridge is returned to the printer, does the LCD show "00 READY"?</td>
<td>Yes</td>
<td>The problem was caused by toner one-sided due to too little toner remaining. Prepare to replace the new cartridge.</td>
</tr>
<tr>
<td>High-voltage electrode</td>
<td>2</td>
<td>Are the developing bias or the toner sensor electrode of the high-voltage power supply PCB assy dirty?</td>
<td>Yes</td>
<td>Clean the electrode.</td>
</tr>
<tr>
<td>High-voltage power supply PCB</td>
<td>3</td>
<td>Is the voltage of P2-13 in high-voltage power supply PCB connector higher than that of P2-11, when the EP-ED HC cartridge which is full with toner is installed?</td>
<td>Yes</td>
<td>Replace the high-voltage power supply PCB assy.</td>
</tr>
<tr>
<td>HV harness Main PCB</td>
<td>4</td>
<td>Is the voltage of P6-13 in the main PCB connector higher than that of P6-11?</td>
<td>Yes</td>
<td>Replace the HV harness.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>Replace the main PCB assy.</td>
</tr>
</tbody>
</table>

M-9 "13 JAM XXXXXX" is not displayed even if a paper jam has occurred (or is displayed even if a paper jam has not occurred) XXXXXX is TRAYS/INSIDE/REAR/DUPLEX.

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator Paper delivery sensor Regist sensor</td>
<td>1</td>
<td>Does the actuator of the paper delivery sensor or the registration sensor operate smoothly?</td>
<td>No</td>
<td>Reassemble or replace the paper delivery actuator and regist sensor actuator.</td>
</tr>
<tr>
<td>Paper delivery sensor Regist sensor</td>
<td>2</td>
<td>Does the voltage of P2-1 in the fixing PCB connector rise from 0V to 5V when the eject sensor is covered, or the voltage of P5-5 in the paper feeder PCB connector rise from 0V to 5V when the registration sensor is covered?</td>
<td>No</td>
<td>Replace the fixing PCB assy or the paper feed/size-sw PCB assy.</td>
</tr>
<tr>
<td>Fuser harness Feed flat cable</td>
<td>3</td>
<td>Does the voltage of P11-1 in the main PCB connector rise from 0V to 5V when the eject sensor is covered, or the voltage of P3-5 in the main PCB connector rise from 0V to 5V?</td>
<td>No</td>
<td>Replace the fuser harness or the feed flat cable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Replace the main PCB assy.</td>
</tr>
</tbody>
</table>
M-10 "54 MOTOR MALF" is displayed (The main motor rotation disabled)

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-voltage power supply PCB</td>
<td>1</td>
<td>Is the voltage of P7-1 in the main PCB connector +24V?</td>
<td>No</td>
<td>Replace the main PCB assy low-voltage power supply PCB assy, or the LV harness.</td>
</tr>
<tr>
<td>LV harness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC motor harness</td>
<td>2</td>
<td>Does the voltage of P7-4 in the main PCB connector drop from 5V to 0V after dropping the voltage of P7-3 from 5V to 0V?</td>
<td>No</td>
<td>Replace the main PCB assy.</td>
</tr>
<tr>
<td>DC motor assy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M-11 No paper pick-up from cassette (or MP tray)

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mis-operation</td>
<td>1</td>
<td>Is the paper feed mode set correctly?</td>
<td>No</td>
<td>Set paper feed mode correctly.</td>
</tr>
<tr>
<td>Main PCB</td>
<td>2</td>
<td>Does the voltage of P3-20 (or 19) in the main PCB connector rise from 0V to 5V and is a pulses having about 11ms period generated at P3-6, 7, 8 ,9 pin?</td>
<td>No</td>
<td>Replace the main PCB assy.</td>
</tr>
<tr>
<td>Feed flat cable</td>
<td>3</td>
<td>Does the voltage of P5-20 (or 19) in the paper feeder PCB. Connector rise from 0V to 5V and is the pulses having about 11ms period generated at P3-6, 7, 8 ,9 pin?</td>
<td>No</td>
<td>Replace the feed flat cable.</td>
</tr>
<tr>
<td>Paper feeder PCB</td>
<td>4</td>
<td>Does the voltage of P3-1 (or P4-1) in the paper feeder PCB connector drop from 24V to 0V and is the chopping pulses generated at P1-1, 2, 5 ,6 pin?</td>
<td>No</td>
<td>Replace the Paper feed/size-SW PCB assy.</td>
</tr>
<tr>
<td>Pick-up(or MP Pick) solenoid</td>
<td>5</td>
<td>Does the pick-up (or MP Pick) solenoid operate?</td>
<td>No</td>
<td>Replace the pick-up (or MP Pick) solenoid.</td>
</tr>
<tr>
<td>Paper feed motor</td>
<td>6</td>
<td>Does the pick-up motor rotate?</td>
<td>No</td>
<td>Replace the paper feed motor assy.</td>
</tr>
</tbody>
</table>
"55 HIGH VOL MALF" is displayed (Faulty output from the H.V.P.S. ASSY)

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main PCB</td>
<td>1</td>
<td>When a test print is carried out, is the voltage of the each pin in the main PCB connector P6 turned on and off as the below list?</td>
<td>No</td>
<td>Replace the main PCB assy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pin No.</td>
<td>Signal name</td>
<td>Voltage (reference value)</td>
</tr>
<tr>
<td></td>
<td>①</td>
<td>/HV1AC</td>
<td></td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>②</td>
<td>/HV1DC</td>
<td></td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>③</td>
<td>/DBAC</td>
<td></td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>④</td>
<td>/DBDC</td>
<td></td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>⑤</td>
<td>DNSTY</td>
<td></td>
<td>1.0 ~ 4.0V</td>
</tr>
<tr>
<td></td>
<td>⑥</td>
<td>/HVT1</td>
<td></td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>⑦</td>
<td>/HVT2</td>
<td></td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>⑧</td>
<td>/HVT3</td>
<td></td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>⑨</td>
<td>HVT4</td>
<td></td>
<td>0.2 ~ 5.0V</td>
</tr>
<tr>
<td></td>
<td>⑩</td>
<td>HVTFB</td>
<td></td>
<td>0.2 ~ 5.0V</td>
</tr>
<tr>
<td></td>
<td>⑪</td>
<td>TONER1</td>
<td></td>
<td>0.0 ~ 3.5V</td>
</tr>
<tr>
<td></td>
<td>⑫</td>
<td>0V</td>
<td></td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>⑬</td>
<td>TONER2</td>
<td></td>
<td>2.0 ~ 4.5V</td>
</tr>
<tr>
<td></td>
<td>⑭</td>
<td>24VRET</td>
<td></td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>⑮</td>
<td>24V</td>
<td></td>
<td>24V</td>
</tr>
<tr>
<td></td>
<td>⑯</td>
<td>HVHALFN</td>
<td></td>
<td>0.0 ~ 10.0V</td>
</tr>
<tr>
<td>HV harness</td>
<td>2</td>
<td>Is the voltage of the each pin of the high-voltage power supply PCB connector P2 turned on and off?</td>
<td>No</td>
<td>Replace the HV harness.</td>
</tr>
<tr>
<td>High-voltage power supply PCB</td>
<td></td>
<td></td>
<td>Yes</td>
<td>Replace the high-voltage power supply PCB assy.</td>
</tr>
</tbody>
</table>
M-13 "50 FUSER MALF" is displayed

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal fuse</td>
<td>1</td>
<td>Is the thermal fuse located in the fixing unit conductive?</td>
<td>No</td>
<td>Replace the fixing unit.</td>
</tr>
<tr>
<td>Thermistor</td>
<td>2</td>
<td>Remove the fixing unit from the printer and measure the resistance between two pins of the 2 pin connector on the fixing PCB. Is the measured resistance within the range of 1.0 MΩ - 1.6MΩ (normal temperature)?</td>
<td>No</td>
<td>Replace the fixing unit.</td>
</tr>
<tr>
<td>Fixing heat roller</td>
<td>3</td>
<td>Is the fixing heat roller located in the fixing unit conductive?</td>
<td>No</td>
<td>Replace the fixing heat roller.</td>
</tr>
<tr>
<td>Low-voltage power supply PCB</td>
<td>4</td>
<td>When the power is switched on, does the voltage at connector pin P4-1 on the main PCB go from 5V to 0V?</td>
<td>Yes</td>
<td>Replace the low-voltage power supply PCB assy.</td>
</tr>
<tr>
<td>Main PCB</td>
<td>5</td>
<td>Make sure if: The EP-ED HC cartridge is installed in the printer correctly. The upper cover of the printer is closed. A paper-loaded cassette is mounted.</td>
<td>No</td>
<td>Replace the main PCB assy.</td>
</tr>
</tbody>
</table>

Note: When the printer has detected a fixing unit malfunction, do not power on for about 15 minutes. Even if the power is on, the printer will shut off the power supply to the fixing heat roller to prevent the fixing the unit from overheating.

M-14 "51 LASER BD MALF" is displayed

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main PCB Laser unit harness</td>
<td>1</td>
<td>Is the problem remedied when the power off and on again?</td>
<td>No</td>
<td>Replace the main PCB asy., the LSR harness 14P, LSR flat cable 6P or the laser unit.</td>
</tr>
</tbody>
</table>

M-15 "52 SCANNER MALF" is displayed

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main PCB Laser unit harness Laser unit</td>
<td>1</td>
<td>Is the problem remedied when the power off and on again?</td>
<td>No</td>
<td>Replace the main PCB asy., the LSR harness 14P, LSR flat cable 6P or the laser unit.</td>
</tr>
</tbody>
</table>
"41 PRINT CHECK" is displayed

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main PCB</td>
<td>1</td>
<td>Does this problem frequently occur?</td>
<td>No</td>
<td>Since this is a temporary problem, remove the paper used when the error occurred and continue to print.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Replace the main PCB assy.</td>
</tr>
</tbody>
</table>
5. TROUBLESHOOTING PAPER TRANSPORT PROBLEMS

5.1 Paper Jams

The paper path is divided into following three blocks:
1) The paper pick-up block, (The LCD display "JAM TRAYS")
2) The separation and feed block, (The LCD display "JAM INSIDE")
3) The fixing and paper delivery block, (The LCD display "JAM REAR")

Therefore, remedies for paper jam problems are described. Respectively for these three blocks.

Figure 6.3
J-1a Paper pick-up block (Pick miss)

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment lever</td>
<td>1</td>
<td>Is the position of the adjustment lever of the cassette corresponding to the paper sheet size?</td>
<td>No</td>
<td>Instruct the user to follow the correct method.</td>
</tr>
<tr>
<td>(spring pressure switching lever)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print paper</td>
<td>2</td>
<td>Is a recommended type of paper being used?</td>
<td>No</td>
<td>Instruct the user to use recommended type of paper.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Is the print paper deformed, curled or wavy?</td>
<td>Yes</td>
<td>Replace the print paper. Instruct the user how to store.</td>
</tr>
<tr>
<td>Maximum paper load on the cassette</td>
<td>4</td>
<td>Does the amount of paper loaded on the cassette exceed the specified maximum paper load?</td>
<td>Yes</td>
<td>Instruct the user not to load more than the maximum amount of paper.</td>
</tr>
<tr>
<td>Pick-up rollers</td>
<td>5</td>
<td>Are the pick-up rollers defomed or worn?</td>
<td>Yes</td>
<td>Replace the pick-up rollers.</td>
</tr>
<tr>
<td>Separation pad</td>
<td>6</td>
<td>Is the separation pad defomed or worn, or is it detached?</td>
<td>Yes</td>
<td>Replace the pad assy.</td>
</tr>
</tbody>
</table>

For solenoid activation, no feeder motor operation and no regist sensor activation, refer to the item NO PAPER PICK-UP FROM THE CASSETTE in the column MALFUNCTIONS.

J-1b Paper pick-up block (Oblique feed jam)

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment lever</td>
<td>1</td>
<td>Is the position of the adjustment lever of the cassette corresponding to the paper sheet size?</td>
<td>No</td>
<td>Instruct the user to follow the correct method.</td>
</tr>
<tr>
<td>(spring pressure switching lever)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper front guide</td>
<td>2</td>
<td>Is the paper front guide set in the correct position?</td>
<td>No</td>
<td>Set the paper front guide.</td>
</tr>
<tr>
<td>MP-feeding paper sheet</td>
<td>3</td>
<td>Are paper sheets set along the left wall?</td>
<td>No</td>
<td>Instruct the user to set paper sheets correctly?</td>
</tr>
<tr>
<td>Cassette-feeding sheet guide,</td>
<td>4</td>
<td>Is the cassette rear side guide set correctly?</td>
<td>No</td>
<td>Instruct the user to set it correctly?</td>
</tr>
<tr>
<td>Cassette rear, side guide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP-feeding paper sheet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP sheet guide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is the MP sheet guide set correctly?</td>
<td>No</td>
<td>Instruct the user to set it correctly?</td>
</tr>
</tbody>
</table>
J-2 Separation and feed block (Paper jam)

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print Paper</td>
<td>1</td>
<td>Is a recommended type of paper being used?</td>
<td>No</td>
<td>Instruct the user to use recommended type of paper.</td>
</tr>
<tr>
<td>Static-charge eliminator</td>
<td>2</td>
<td>Is the static-charge eliminator dirty?</td>
<td>Yes</td>
<td>Clean the static-charge eliminator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>Replace the transfer base assy.</td>
</tr>
</tbody>
</table>

J-3 Fixing and paper delivery block (Paper jam)

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixing unit entrance guide</td>
<td>1</td>
<td>Is the entrance guide dirty?</td>
<td>Yes</td>
<td>Clean the entrance guide.</td>
</tr>
<tr>
<td>Fixing unit Separation guide</td>
<td>2</td>
<td>Is the separation guide worn or deformed?</td>
<td>Yes</td>
<td>Replace the fixing unit.</td>
</tr>
<tr>
<td>Paper delivery actuator</td>
<td>3</td>
<td>Is the paper sensor arm movement smooth?</td>
<td>Yes</td>
<td>Replace the fixing unit.</td>
</tr>
<tr>
<td>Changeover guide Delivery rollers</td>
<td>4</td>
<td>Is the changeover guide movement smooth?</td>
<td>No</td>
<td>Replace the changeover guide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is the delivery roller movement smooth?</td>
<td>No</td>
<td>Replace the rear cover assy.</td>
</tr>
<tr>
<td>Paper jam remove cover Rear cover</td>
<td>5</td>
<td>Are there dirt or flaws on the ribs of the jam remove cover and rear cover?</td>
<td>No</td>
<td>Replace the jam remove cover and the rear cover assy.</td>
</tr>
</tbody>
</table>
5.2 Incomplete Paper Feed

F-1 Double feeding

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print paper</td>
<td>1</td>
<td>Is a recommended type of paper being used?</td>
<td>No</td>
<td>Instruct the user to use recommended type of paper.</td>
</tr>
<tr>
<td>Adjustment lever (spring pressure switching lever)</td>
<td>2</td>
<td>Is the position of the adjustment lever of the cassette corresponding to the paper sheet size?</td>
<td>No</td>
<td>Instruct the user to switch adjustment lever position.</td>
</tr>
<tr>
<td>Paper front guide Separation pad</td>
<td>3</td>
<td>Is the paper front guide broken?</td>
<td>Yes</td>
<td>Replace the paper front guide.</td>
</tr>
</tbody>
</table>
| | | | | Replace the separation pad. |}

F-2 Wrinkles

<table>
<thead>
<tr>
<th>Possible cause</th>
<th>Step</th>
<th>Check</th>
<th>Result</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print paper</td>
<td>1</td>
<td>Is a recommended type of paper being used?</td>
<td>No</td>
<td>Instruct the user to use recommended type of paper.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Is the wrinkle problem solved if fresh paper is used?</td>
<td>Yes</td>
<td>Instruct the user in correct print paper storage procedure to be free from moisture.</td>
</tr>
<tr>
<td>Paper pick-up block</td>
<td>3</td>
<td>Is the paper already wrinkled or being fed askew?</td>
<td>Yes</td>
<td>Check the motion of the paper-pick up block.</td>
</tr>
<tr>
<td>Fixing unit entrance guide Fixing unit</td>
<td>4</td>
<td>Is the entrance guide dirty?</td>
<td>Yes</td>
<td>Clean the entrance guide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Replace the fixing unit.</td>
</tr>
</tbody>
</table>
6. OPERATION

6.1 Line Inspection Mode Procedure

(1) Install flash memory cards 1 & 2 and an optional MIO board.

(2) While pressing the \(\triangle\) switch, turn the power on. The LCD will display: \(\text{LINE TEST}\)

(3) Press the \(\text{SET}\) switch to check if the LCD comes on. All the LCD elements will come on simultaneously.

(4) Press the \(\text{CONTINUE}\) switch to check the pushbutton switch. All the LEDs will go out and the LCD will display the characters shown below: Press all the switches by turns. The following LEDs will turn on by turns upon pressing the pushbutton switch.

```
X X X X X X X X
```

Switch key numbers

```
1 2 3 4 5 6 7 8
```

Key number	LED
1 | Ready
2 | Online
3 | Data
4 | Alarm

(5) Press the \(\text{CONTINUE}\) switch to check RAM size.

<table>
<thead>
<tr>
<th>RAM SIZE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8MB</td>
<td>8M (standard)</td>
</tr>
<tr>
<td>XXMB</td>
<td>XX : Expanded SIMM + 8MB</td>
</tr>
<tr>
<td>RAM SIZE ERROR</td>
<td>In case of error</td>
</tr>
</tbody>
</table>

(6) Press the \(\text{CONTINUE}\) switch to check the fan.

FAN HIGH SPEED Make sure that the fan rotates at the high speed. Press the \(\text{CONTINUE}\) switch.

FAN LOW SPEED Make sure that the fan rotates at the low speed.

(7) Press the \(\text{CONTINUE}\) switch to check the 1st stage cassette.

<table>
<thead>
<tr>
<th>TRAY 1</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>Appears when the cassette is set to A4 size.</td>
</tr>
<tr>
<td>LETTER</td>
<td>Appears when the cassette is set to letter size.</td>
</tr>
<tr>
<td>NO</td>
<td>Appears when no cassette is set.</td>
</tr>
<tr>
<td>NO</td>
<td>Appears when no cassette is set and the duplex sensor is on. The Alarm LED turns on.</td>
</tr>
<tr>
<td>CASSETTE ERROR!!</td>
<td>Appears in case of error.</td>
</tr>
</tbody>
</table>

VI-22
(8) Press the **CONTINUE** switch to check the 2nd stage cassette.

- **TRAY 2 = A4** Appears when the cassette is set to A4 size.
- **TRAY 2 = LETTER** Appears when the cassette is set to letter size.
- **TRAY 2 = NO** Appears when no cassette is set.
- **CASSETTE ERROR!!** Appears in case of error.

(9) Press the **CONTINUE** switch to check multi purpose tray.

- **MP TRAY** Set paper on the MP tray.
- **MP TRAY OK!!**

(10) Stuck sensor check

- **STUCK = LOW** Appears when the stuck full sensor for the standard output tray is off.
- **STUCK = FULL** Appears when the stuck full sensor for the standard output tray is on.

(11) Press the **CONTINUE** switch to check flash memory cards and the MIO.

- **CARD1 R/W START** Checks reading/writing on Card 1 ID.
- **CARD1 R/W OK!!** The flash card works correctly.
- **CARD2 R/W START** Checks reading/writing on Card 2 ID.
- **CARD2 R/W OK!!** The flash card works correctly.
- **MIO CHECK START** The flash card works correctly.
- **RAM SIZE = 8M**
- **Now initializing**
- **LJ WAIT 001P T1** You can turn off the power when this message is displayed. If there is no toner cartridge or paper, the message "14 NO CARTRIDGE" or "CHECK TRAY" will be displayed.
- **LJ READY 001P T1**

(13) Turn off the power.

Note: The checks on and after (11) are carried out automatically, and if an error is detected, one of the following messages will be displayed. Checks can be resumed if the CONTINUE switch is pressed.

- **R/W ERROR CARD1** There is a problem in reading/writing from the flash memory card 1.
- **R/W ERROR CARD2** There is a problem in reading/writing from the flash memory card 2.
<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No flash memory card is installed.</td>
<td></td>
</tr>
<tr>
<td>No flash memory card is installed.</td>
<td></td>
</tr>
<tr>
<td>The Write Protect switch of the flash memory card 1 is on.</td>
<td>CARD1 WP SWITCH</td>
</tr>
<tr>
<td>The Write Protect switch of the flash memory card 2 is on.</td>
<td>CARD2 WP SWITCH</td>
</tr>
<tr>
<td>The MIO has a problem.</td>
<td>45 MIO ERROR</td>
</tr>
<tr>
<td>No MIO board is installed.</td>
<td>NO MIO BOARD!!</td>
</tr>
<tr>
<td>If this message remains displayed, the MIO has a problem.</td>
<td>Now initializing</td>
</tr>
</tbody>
</table>
6.2 DRAM Test

(1) To start up the test program:
While pressing the ▼ Switch (RESET switch), turn the power on.
“DRAM CHECK” will be displayed. Then press CONTINUE switch to start DRAM checking.

(2) The LCD will display “START DRAM TEST” and the DATA lamp or ALARM lamp will be flashing.

(3) On satisfactory completion of all the RAM test, the LCD will display:
“DRAM OK!!”.

(4) If any DRAM has an error, the LCD will display:

```
RAM address  WRITE data  READ data
```

(5) Enter the hidden menu mode as follows to confirm the current memory map;
i) Press the Form Feed, Mode and Continue buttons at the same time in the off-line status.
ii) The LCD will display “HIDDEN PANEL”
iii) Select the “DRAM ADDRESS” menu using the scroll buttons.
iv) Whenever the Set button is pressed, the LCD will display the DRAM error address on the Main PCB, Slot 1 and Slot 2 in turn.

(6) If a SIMM DRAM has an error, replace the SIMM corresponding to the above memory map information.
If the DRAM on the Main PCB has an error, replace referring to the table below;

<table>
<thead>
<tr>
<th>Lower order address</th>
<th>DRAM chip to be replaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 4, 8, C</td>
<td>#30, 31</td>
</tr>
<tr>
<td>1, 5, 9, D</td>
<td>#30, 31</td>
</tr>
<tr>
<td>2, 6, A, E</td>
<td>#16, 17</td>
</tr>
<tr>
<td>3, 7, B, F</td>
<td>#16, 17</td>
</tr>
</tbody>
</table>

*1: Replace the DRAM on the Main PCB.

Note1: There may be the case that the above sequence doesn’t work correctly according to the contents of RAM failure, or in faulty assembly such as soldering bride or ineffective soldering etc.

Note2: “PRINT CHECK” may be displayed when getting out from TEST mode. It will disappear in 20 or 30 seconds, displaying “READY” on LCD. It is not a trouble.
7. STATUS MESSAGE LIST

Table 6.2 Operator Call Messages

<table>
<thead>
<tr>
<th>Operator Call Message</th>
<th>Meaning</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK XX TRAY</td>
<td>The paper cassette (XX is MP/T1/T2) is out of paper.</td>
<td>Load a stack of paper into the cassette. See M-7.</td>
</tr>
<tr>
<td>12 COVER OPEN</td>
<td>The upper cover of the printer is open.</td>
<td>Close the cover. See M-6.</td>
</tr>
<tr>
<td>13 JAM XXXXXX</td>
<td>Paper is jammed in the printer. XXXXXX is TRAYS/INSIDE/REAR/DUPLEX.</td>
<td>Remove the jammed paper from the indicated area. See M-10.</td>
</tr>
<tr>
<td>14 NO CARTRIDGE</td>
<td>The toner cartridge is not installed in the printer.</td>
<td>Install a toner cartridge. See M-8.</td>
</tr>
<tr>
<td>XX NO CASSETTE</td>
<td>The paper cassette is not installed. XX is T1/T2.</td>
<td>Install the paper cassette.</td>
</tr>
<tr>
<td>16 TONER EMPTY</td>
<td>The printer has almost run out of toner: you may print another 30 to 100 pages. (The ALARM lamp lights at the same time.)</td>
<td>Remove the toner cartridge, rock it several times at 45°, and install it again. Or replace the toner cartridge with a new one. See M-9.</td>
</tr>
<tr>
<td>XX LOAD PAPER ***** SIZE</td>
<td>The wrong size of paper was loaded in the paper cassette XX. XX is MP/ T1/T2. (The message appears alternately to show a particular size.)</td>
<td>Load the requested size of paper in the paper cassette, or load it on the manual feed tray and press the FORM FEED switch.</td>
</tr>
<tr>
<td>18 MANUAL FEED ***** SIZE</td>
<td>The printer requests you to load paper manually. (The message appears alternately to show a particular size.)</td>
<td>Load the requested size of paper on the multi-purpose tray and press the SEL switch.</td>
</tr>
<tr>
<td>19 CHECK FONT</td>
<td>An error occurred in the optional font cartridge/card.</td>
<td>Turn off the printer, and reinstall or replace the optional font cartridge/card.</td>
</tr>
<tr>
<td>20 FONT REMOVAL 1</td>
<td>The font card was removed while the printer is on-line.</td>
<td>Turn off the printer, install the font card, and turn on the printer. The CONTINUE switch will allow you to temporarily ignore this message.</td>
</tr>
<tr>
<td>FONT REMOVAL 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 NO DX UNIT</td>
<td>The duplex unit is not installed with the printer when the duplex printing mode is selected.</td>
<td>Install the duplex unit correctly. See the DX-1200 user’s guide.</td>
</tr>
<tr>
<td>27 NO DX TRAY</td>
<td>The duplex paper guide tray is not installed in T1 when the duplex printing mode is selected.</td>
<td>Install the duplex paper guide tray into T1. See the DX-2000 user’s guide.</td>
</tr>
<tr>
<td>27 DX OPEN</td>
<td>The cover of the duplex unit is open.</td>
<td>Close the cover. See the DX-2000 user’s guide.</td>
</tr>
<tr>
<td>Error Message</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>31 PRINT OVERRUN</td>
<td>Print overrun</td>
<td>Press the CONTINUE switch to start printing the next page. Data which overran the print area on the page cannot be printed. Check your page protection setting with the MODE switch. Setting page protection to the correct size could solve this problem. If printing at 600 dpi, you may need to add optional SIMM memory.</td>
</tr>
<tr>
<td>32 BUFFER ERROR</td>
<td>Input buffer overflow</td>
<td>Press the CONTINUE switch to resume printing. Data lost in overflow cannot be printed.</td>
</tr>
<tr>
<td>34 MEMORY FULL</td>
<td>Work memory overflow</td>
<td>Press the CONTINUE switch to resume printing. If the same error should occur after you press the CONTINUE switch, turn off the printer. Wait a few seconds, then turn it on again. Reduce the input buffer size. Turn off “KEEP PCL.” Add SIMM memory with power off. Download font and the font saved in the HDD card might cause the error, for it occupies the same work area as the RAM. Memory expansion is recommended in that case.</td>
</tr>
<tr>
<td>40 LINE ERROR</td>
<td>Error in the communications circuit</td>
<td>When the serial interface is used, check the communications parameters such as baud rate, code type, parity, and handshake protocols. When the parallel interface is used, check the interface cable connection.</td>
</tr>
<tr>
<td>41 PRINT CHECK</td>
<td>Error in communication with the engine controller</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. See M-17.</td>
</tr>
<tr>
<td>Error Message</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>42 CARD 1 FULL</td>
<td>Card overflow</td>
<td>Delete unnecessary macros or fonts, or use a new card.</td>
</tr>
<tr>
<td>CARD 2 FULL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 CARD 1 W ERROR</td>
<td>Card write error</td>
<td>Set the write protect switch of the card to OFF if it has been set to ON. Use a new card. If the same error occurs, consult your dealer or service personal.</td>
</tr>
<tr>
<td>CARD 2 W ERROR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 MIO ERROR</td>
<td>Error in communication with the MIO card.</td>
<td>Install the MIO card correctly.</td>
</tr>
<tr>
<td>46 OPT IO ERROR</td>
<td>Connection error with optional feeders and duplex unit.</td>
<td>Check the interface cable connection between the printer and the fitted option.</td>
</tr>
<tr>
<td>47 CARD R ERROR</td>
<td>Card read error</td>
<td>Use a new card, If the same error occurs, consult your dealer or service personal.</td>
</tr>
<tr>
<td>48 XX SIZE ERROR</td>
<td>Paper of incorrect size is loaded into XX. XX is T2/DX.</td>
<td>Set the correct size of paper in T2 or for duplex printing.</td>
</tr>
<tr>
<td>IGNORE DATA</td>
<td>Data is ignored because of an error in the Post Script program.</td>
<td>Press the RESET switch.</td>
</tr>
<tr>
<td>(BR- Script 2 mode only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 INCORRECT LT</td>
<td>The lower tray unit for HL-1260 / 1260e / 1660 / 1660e is installed.</td>
<td>Install the lower tray unit LT-2000.</td>
</tr>
<tr>
<td>49 INCORRECT DX</td>
<td>The duplex unit for HL-1260 / 1260e / 1660 / 1660e is installed.</td>
<td>Install the duplex unit DX-2000.</td>
</tr>
<tr>
<td>73 MAINTENANCE 1</td>
<td>Notice for replacing the periodical replacement parts.</td>
<td>Replace the following parts of and reset the parts life counter. (See Page V-1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fixing unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Paper pick-up roller ASSY 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Paper pick-up roller ASSY 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Separation pad ASSY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Separation pad ASSY W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Transfer roller ASSY A</td>
</tr>
<tr>
<td>Error Message</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>73 MAINTENANCE 2</td>
<td>Notice for replacing the periodical replacement parts.</td>
<td>Replace the following parts of and reset the parts life counter. (See Page V-1)</td>
</tr>
<tr>
<td></td>
<td>The output paper tray or the output paper tray of MX-2000 is full of output paper.</td>
<td>• Laser unit</td>
</tr>
<tr>
<td>STACK FULL</td>
<td></td>
<td>Remove the output paper.</td>
</tr>
<tr>
<td>UNKOWN LANGUAGE</td>
<td>FAX data is sent to a printer with no FAX modem card.</td>
<td>Install a FAX modem card correctly.</td>
</tr>
<tr>
<td>Service Call Message</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>50 FUSER MALF</td>
<td>Malfunction of fuser</td>
<td>Turn off the printer. Wait 15 minutes, then turn it on again. See M-14.</td>
</tr>
<tr>
<td>51 LASER BD MALF</td>
<td>Malfunction of laser beam detector</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. See M-15.</td>
</tr>
<tr>
<td>52 SCANNER MALF</td>
<td>Malfunction of laser unit motor</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. See M-16.</td>
</tr>
<tr>
<td>53 DX FAN MALF</td>
<td>Malfunction of fan motor in the duplex unit.</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again.</td>
</tr>
<tr>
<td>54 MOTOR MALF</td>
<td>Malfunction of main motor</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. See M-11.</td>
</tr>
<tr>
<td>55 HIGH VOL MALF</td>
<td>Malfunction of high-voltage power supply Malfunction of Transfer roller ASSY</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. See M-13.</td>
</tr>
<tr>
<td>61 PROG ERROR</td>
<td>Program ROM checksum error</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again.</td>
</tr>
<tr>
<td>63 D-RAM ERROR</td>
<td>D-RAM error</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again.</td>
</tr>
<tr>
<td>66 NV-W ERROR</td>
<td>NV-RAM error</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again.</td>
</tr>
<tr>
<td>67 NV-R ERROR</td>
<td>NV-RAM error</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again.</td>
</tr>
<tr>
<td>68 NV-B ERROR</td>
<td>NV-RAM error</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again.</td>
</tr>
<tr>
<td>60 SYSTEM ERROR XXXXX</td>
<td>Error in XXXXX.</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again.</td>
</tr>
<tr>
<td>Service Call Message</td>
<td>Meaning</td>
<td>Action</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>99 SERVICE 2</td>
<td>Instruction access error</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. If still remains, replace the main PCB.</td>
</tr>
<tr>
<td>99 SERVICE 3</td>
<td>Memory address not aligned</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. If still remains, replace the main PCB.</td>
</tr>
<tr>
<td>99 SERVICE 4</td>
<td>Instruction bus error</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. If still remains, replace the main PCB.</td>
</tr>
<tr>
<td>99 SERVICE 5</td>
<td>Data bus error</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. If still remains, replace the main PCB.</td>
</tr>
<tr>
<td>99 SERVICE 6</td>
<td>Privileged instruction</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. If still remains, replace the main PCB.</td>
</tr>
<tr>
<td>99 SERVICE 8</td>
<td>Illegal instruction</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. If still remains, replace the main PCB.</td>
</tr>
<tr>
<td>99 SERVICE 9</td>
<td>No fpu</td>
<td>Turn off the printer. Wait a few seconds, then turn it on again. If still remains, replace the main PCB.</td>
</tr>
</tbody>
</table>
CHAPTER VII HIDDEN FUNCTIONS

1. HIDDEN FUNCTION LIST

HL-2060 has 3 entrance operation into the hidden function menu;
1. Power on and specified key(s)
2. Off-line and MODE + FF + CONT
3. Off-line and CONT + SEL

To regulate accesses from end users, the user’s manual mentions only “Off-line and CONT + SEL”.

1.1 Holding down Specified Key(s) at Power on

The following basic printer setting and the factory test mode will be available with this operation.

<table>
<thead>
<tr>
<th>Key(s)</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲</td>
<td>LINE TEST</td>
<td>Printer test mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for factory use</td>
</tr>
<tr>
<td></td>
<td>LINE TEST OPTION</td>
<td>Printer options (flash card, font cart. MIO)test mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for factory use</td>
</tr>
<tr>
<td></td>
<td>DRAM CHECK START</td>
<td>Check DRAM</td>
</tr>
<tr>
<td></td>
<td>NV-RAM CLEAR</td>
<td>Clear NV-RAM</td>
</tr>
<tr>
<td></td>
<td>ROM/RAM WAIT SET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>exit MENU</td>
<td></td>
</tr>
</tbody>
</table>

- **MODE CONTINUE**: (No display reads) Adjust the sensing point of the toner empty.
- **RESET TEST**: Not read “toner empty”.
- **TONER WARN = OFF**: Read “toner empty” with beep sound.
- **TONER WARN = ON**: Read “toner empty” with no beep sound.
- **TONER WARN = QUIET**: Set a printer to work as a standard machine.
- **PRN MODE = NORMAL**: Set a printer to work as a demo machine.
- **PRN MODE = DEMO**: Continuous test print
Hex dump mode

* Printer reset is needed to exit this mode.

(No display reads) Reads the date of program / font ROM. Press CONT to switch program and font.

(No display reads) Choose LCD local prompt message.

(No display reads) NV-RAM settings returns to the factory default settings. These settings are reset in addition to the factory reset.

• Interface
• Page Protect
• HRC
• Panel Lock
• Toner Density

(No display reads) Check DRAM strictly.

Write the data received through the parallel I/F onto flash memory modules on the main ROM socket.

Write the data which is stored on a PCMCIA card onto flash memory modules on the main ROM socket.

Write the data received through the parallel I/F onto flash memory modules on the option ROM socket.

Write the data which is stored on a PCMCIA card onto flash memory modules on the option ROM socket.

Write the data received through the parallel I/F onto patch flash memory modules.

Write the data which is stored on a PCMCIA card onto patch flash memory modules.

Write the data on the option ROM onto flash memory modules on the main ROM socket.
Write the data on the main ROM onto flash memory modules on the option ROM socket.

If there is any writing error during writing data onto the patch flash modules, the printer becomes unable to initialize itself at power on. In this case, pressing SEL and MODE keys at power on makes the printer run with the original masked program ROM.
1.2 **Off-line and Hold Down MODE + FF + CONT Keys**

<table>
<thead>
<tr>
<th>Display</th>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE TEST</td>
<td>TONER EMPTY TEST</td>
<td>Carry out tests of the engine functionality.</td>
</tr>
<tr>
<td>ENGINE TEST</td>
<td>LASER TEST</td>
<td>If the resolution is 1200 dpi on the panel, the motor rotates at the half speed of the standard speed. If the resolution is 600/300 dpi, the motor rotates at the standard speed.</td>
</tr>
<tr>
<td></td>
<td>MOTOR TEST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SENSOR TEST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>exit ENGINE TEST</td>
<td></td>
</tr>
<tr>
<td>SINGLE TESTPRINT</td>
<td>TEST PRN=NORMAL</td>
<td>Test print sheet</td>
</tr>
<tr>
<td></td>
<td>TEST PRN=GRID</td>
<td>10mm grid pattern sheet</td>
</tr>
<tr>
<td></td>
<td>TEST PRN=LINE</td>
<td>Zip (2 dots and 3 spaces) pattern sheet</td>
</tr>
<tr>
<td></td>
<td>TEST PRN=BLACK</td>
<td>All black sheet</td>
</tr>
<tr>
<td></td>
<td>TEST PRN=WHITE</td>
<td>White (blank) sheet</td>
</tr>
<tr>
<td></td>
<td>TEST PRN=GRID2</td>
<td>10mm grid pattern sheet for offset print check</td>
</tr>
<tr>
<td>REPEAT TESTPRINT</td>
<td>TEST PRN=NORMAL</td>
<td>Continuously print the test pattern sheet. Test print sheet 10mm grid pattern sheet</td>
</tr>
<tr>
<td></td>
<td>TEST PRN=GRID</td>
<td>Zip (2 dots and 3 spaces) pattern sheet</td>
</tr>
<tr>
<td></td>
<td>TEST PRN=LINE</td>
<td>All black sheet</td>
</tr>
<tr>
<td></td>
<td>TEST PRN=BLACK</td>
<td>White (blank) sheet</td>
</tr>
<tr>
<td></td>
<td>TEST PRN=WHITE</td>
<td></td>
</tr>
</tbody>
</table>
10mm grid pattern sheet for offset print check

Adjust the top margin for feeding from MP tray in the range from -2.0 mm to +2.0 mm, by 0.5 mm
Adjust the top margin for feeding from cassette tray in the range from -2.0 mm to +2.0 mm, by 0.5 mm

Adjust the toner fixing temperature for transparencies at 20 PPM printing.
- Standard temperature
- -5 C from standard temperature
- +5 C from standard temperature
- +10 C from standard temperature

Adjust the toner fixing temperature for regular paper at 20 PPM printing.
- Standard temperature
- -5 C from standard temperature
- +5 C from standard temperature
- +10 C from standard temperature

Adjust the toner fixing temperature for thick paper at 20 PPM printing.
- Standard temperature
- -5 C from standard temperature
- +5 C from standard temperature
- +10 C from standard temperature

Adjust the toner fixing temperature for regular paper at 10 PPM printing.
- Standard temperature
- -5 C from standard temperature
- +5 C from standard temperature
- +10 C from standard temperature
Adjust the toner fixing temperature for regular paper at 10 PPM printing.
- Standard temperature
- -5°C from standard temperature
- +5°C from standard temperature
- +10°C from standard temperature

Adjust the toner fixing temperature for thick paper at 21 PPM printing.
- Standard temperature
- -5°C from standard temperature
- +5°C from standard temperature
- +10°C from standard temperature

Adjust the timing to switch between the standard output tray and the MX output tray.
From -0 PPM up to -3.5 PPM, by 0.5 PPM.

Adjust the timing to switch between a bin of the MX output tray and another bin of the MX output tray.
From -0 PPM up to -3.5 PPM, by 0.5 PPM.

Switch the toner density table.

Countermeasure for the flicker problem.
The value is 40 by default. It can be set in the range of 0 - 63.

Select to use or not to use the power save mode.
The poser save mode works. This is chosen by default.

The printer does not enter the power save mode.

When receiving DC3 in Epson emulation, ignore the data received before DC1. Not ignore the data even DC3 is received.

Selection for a reprint chara. and download font creation.

Place “Beta” on E1h of IBM chara. set.

Place “Esszet” on E1h of IBM chara. set.

Effective setting in EPSON, IBM emulation.

Not make a reprinted chara. bold.

Make a reprinted chara. bold. (Print speed would get slow.)

Create bold & italic font from download fonts.

Not create bold & italic font from download fonts.

Create bold & italic font from bitmap fonts.

Not create bold & italic font from bitmap fonts.
Use 16.66 pitch for EPSON, IBM condensed chara.

Use 17.14 pitch for EPSON, IBM condensed characters.

Enable to select European Parliament fonts.

Enable to select Hebrew fonts.

The priority of selection for 300 dpi bitmap fonts are higher than scalable font.

The compatibility of font selection manner with HP LaserJet 4 is not maintained if you choose 3B PRIO = HIGH.

The priority of selection for 300 dpi bitmap fonts are standard (= low).

Settings for the default font and the panel-fixed fonts in EPSON, IBM emulation.

Only similar size fonts are selectable as scalable is selected.

All fonts are selectable.
Settings for the scalable italic fonts in EPSON, IBM emulation.

Make upright font oblique to have italic as scalable font is selected.

Use the italic font to have italic as scalable font is selected.

Printers to be shipped to USA and Canada have the Letter size setting by default.
Printers to be shipped to the other area than USA and Canada have the A4 size setting by default.

BUSY signal gets high when STROBE signal goes down (low).
BUSY signal gets high when STROBE signal goes up.
This is chosen by default.

ACK signal is sent out when BUSY signal goes down.
ACK signal is sent out before BUSY signal goes down.
This is chosen by default.

Not reset a printer upon INPUT PRIME signal.
This is chosen by default.
Reset a printer upon INPUT PRIME signal.

Not check DSR(DR) signal when a printer send back data to a host through RS-232C.
This is chosen by default.
Check DSR(DR) signal when a printer send back data to a host through RS-232C.

Handle Xon/Xoff as a data to be printed. This is chosen by default. Handle Xon/Xoff as a protocol.

This allows you to set the timing to send out XOFF depending on the free receiving data buffer of the printer.

Send out XOFF at 11K bytes of the free space remaining.

Send out XOFF at 21K bytes of the free space remaining.

Send out XOFF at 101K bytes of the free space remaining.

Selection of a local language for display.

English

French

German

Dutch

Spanish

Italian

Finnish
This is chosen by default.

Display the following information about program/font ROMs by pressing the CONT key:
- Date of the Program
- Time of the program
- Date of the font data
- Time of the font data
- Version of the program

DRAM check mode

Display the DRAM address

Turn Off the automatic HRC control.
This is chosen by default.

Turn ON the automatic HRC control.

Add DEMO PAGE into TEST menu.
This is chosen by default.

Remove DEMO PAGE into TEST menu.

Debug mode for the printer panel

Debug mode for print outs
To transfer the data of dot matrix printers coming through MIO to RS-232C. Print the data on the printer. This is chosen by default. Pass the data through RS-232C to print it out on a dot matrix printer.

Switch the emulation to the PS mode when AppleTalk receives data. This is chosen by default. The auto emulation function switches emulations.

Rotate the fan when a printer is in ready status. This is chosen by default. Reverse ON/OFF when a printer is in ready status. Not rotate the fan when a printer is in ready status.

The fan rotates at low speed when a printer is in ready status. This is chosen by default. The fan rotates at high speed when a printer is in ready status.

Set the time to turn ON the fan in the range from 0 sec. to 3600 sec., by 15 sec.

Set the time to turn OFF the fan in the range from 0 sec. to 3600 sec., by 15 sec.

Rotate the fan when a printer is in the sleep mode.
<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW = ON/OFF</td>
<td>Reverse ON/OFF when a printer is in the sleep mode.</td>
</tr>
<tr>
<td>SW = OFF</td>
<td>Not rotate the fan when a printer is in the sleep mode.</td>
</tr>
<tr>
<td></td>
<td>This is chosen by default.</td>
</tr>
<tr>
<td>SPEED (S)</td>
<td>The fan rotates at low speed when a printer is in the sleep mode.</td>
</tr>
<tr>
<td></td>
<td>This is chosen by default.</td>
</tr>
<tr>
<td>SPEED = SLOW</td>
<td>The fan rotates at high speed when a printer is in the sleep mode.</td>
</tr>
<tr>
<td>FAN ON = 0S</td>
<td>Set the time to turn ON the fan in the range from 0 sec. to 3600 sec.,</td>
</tr>
<tr>
<td></td>
<td>by 15 sec.</td>
</tr>
<tr>
<td>OFFTIME (S)</td>
<td>Set the time to turn OFF the fan in the range from 0 sec. to 3600 sec.,</td>
</tr>
<tr>
<td></td>
<td>by 15 sec.</td>
</tr>
<tr>
<td>MP FEED TIME</td>
<td>Set the time between when MP tray sensor senses paper and starting to feed.</td>
</tr>
<tr>
<td>MP FEED=500msec</td>
<td>The value can be selected in the range from 0 msec. to 2000 msec., by 100</td>
</tr>
<tr>
<td></td>
<td>msec.</td>
</tr>
<tr>
<td>FLASH CARD CHECK</td>
<td>Flash card test mode</td>
</tr>
<tr>
<td>FLASH CARD CHK2</td>
<td>Flash card test mode</td>
</tr>
<tr>
<td>FIRST PRINT</td>
<td>Set the first print speed.</td>
</tr>
<tr>
<td>SPEED=NORMAL</td>
<td>Not rotate a laser unit at power on for the less of laser unit noise.</td>
</tr>
<tr>
<td></td>
<td>This is chosen by default.</td>
</tr>
<tr>
<td>SPEED=MIDDLE</td>
<td>Rotate a laser unit at power on.</td>
</tr>
<tr>
<td></td>
<td>The first print time will reduced.</td>
</tr>
</tbody>
</table>
Always keep a laser unit rotating. The first print time will be reduced by 2 sec.
*As the laser unit life is 3000h, it would necessary to replace the laser unit periodically.
Adjust the interval of the paper feeding

<table>
<thead>
<tr>
<th>SPEED=HIGH</th>
<th>Always keep a laser unit rotating. The first print time will be reduced by 2 sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT SPEED</td>
<td></td>
</tr>
<tr>
<td>SPEED=20.0ppm</td>
<td>A4 size paper is fed with an interval to achieve 20ppm print speed. This is chosen by default.</td>
</tr>
<tr>
<td>SPEED=21.0ppm</td>
<td></td>
</tr>
<tr>
<td>HUMIDITY</td>
<td></td>
</tr>
<tr>
<td>HUMIDITY=LOW</td>
<td>Countermeasure of the print quality problem which is likely appear as it is high humidity. This is chosen by default.</td>
</tr>
<tr>
<td>HUMIDITY=HIGH</td>
<td></td>
</tr>
<tr>
<td>PS BINARY SELECT</td>
<td>Change the handling of data which comes in through CDCC and RS-232C.</td>
</tr>
<tr>
<td>PS BINARY=ASCII</td>
<td>Handle the data as ASCII. Cntl-T, Cntl-C etc. are handled as the control codes. This is chosen by default. Binary data can be printed. Cntl-T, Cntl-C etc. does not work.</td>
</tr>
<tr>
<td>PS BINARY=BIN</td>
<td></td>
</tr>
<tr>
<td>PS QUOTE BINARY</td>
<td></td>
</tr>
<tr>
<td>PS QUOTEBIN=ON</td>
<td>Not accept the binary data even with special codes. This is chosen by default. Accept the binary data with special codes.</td>
</tr>
<tr>
<td>PS QUOTEBIN=ON</td>
<td></td>
</tr>
<tr>
<td>PS IMAGE MASK</td>
<td>This setting is for the faster print speed with a OS/2 driver.</td>
</tr>
<tr>
<td>PS IMAGEMSK=OFF</td>
<td>This is chosen by default.</td>
</tr>
<tr>
<td>PS IMAGEMSK=ON</td>
<td></td>
</tr>
</tbody>
</table>
To support Windows 95 Plug & Play.

- **BOISE ID MODE**
 - **BOISE ID=WIN95**
 - **BOISE ID=IEEE**
 This is chosen by default.

- **ECP RLE MODE**
 - **ECP RLE = OFF**
 This is chosen by default.
 - **ECP RLE = ON**
 Use the ranlength decompression on software side.

To support some MIO with a firmware download function and unknown timeout for restarting.

- **MIO RESTART MODE**
 - **MIO RESTART = OFF**
 - **MIO RESTART = ON**
 Restart MIO after the 10 min.-timeout.
 This is chosen by default.

Some UNIX systems leave a printer with MIO in open connection and do not put it close connection. Due to this, the data received by the other interfaces is not processed.

- **MIO TIMEOUT MODE**
 - **MIO TIMEOUT = OFF**
 - **MIO TIMEOUT = ON**
 Even if a printer stays in open connection, it is able to process the data received by parallel and serial I/F. This is chosen by default.

- **DPX MODE**
 - **DPX MODE = SLOW**
 Process 2 pages data at a time.
 - **DPX MODE = FAST**
 Process 4 pages data at a time.
 This is chosen by default.

- **JOB TIMEOUT SEL**
 - **TIME OUT=ON**
 PJL JOB TIMEOUT is effective.
 This is chosen by default.
 - **TIME OUT=OFF**
 PJL JOB TIMEOUT does not carry out.
Test for memory.

- MEMORY DEBUG
- MEMORY DISPLAY
- MEMORY TEST
- exit MENU
1.3 Off-line and Hold Down CONT + SEL Keys

<table>
<thead>
<tr>
<th>Display</th>
<th>Selection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFILL CART: MODE</td>
<td>EP/ED CART</td>
<td>Adjust the voltage to sense toner empty. Standard toner empty sensing. This is chosen by default. Suitable or MICR cartridge. (Voltage for the toner empty sense is -0.3V)</td>
</tr>
<tr>
<td></td>
<td>MICR CART</td>
<td>Set the voltage for the toner empty sense at -0.1V</td>
</tr>
<tr>
<td></td>
<td>REFILL CART1</td>
<td>Set the voltage for the toner empty sense at -0.2V</td>
</tr>
<tr>
<td></td>
<td>REFILL CART2</td>
<td></td>
</tr>
<tr>
<td>SPECIAL</td>
<td>SPECIAL CART. 1</td>
<td>Set the voltage for the toner empty sense at -0.7V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 2</td>
<td>-0.6V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 3</td>
<td>-0.5V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 4</td>
<td>-0.4V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 5</td>
<td>-0.3V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 6</td>
<td>-0.2V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 7</td>
<td>-0.1V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 8</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 9</td>
<td>+0.1V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 10</td>
<td>+0.2V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 11</td>
<td>+0.3V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 12</td>
<td>+0.4V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 13</td>
<td>+0.5V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 14</td>
<td>+0.6V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 15</td>
<td>+0.7V</td>
</tr>
<tr>
<td></td>
<td>SPECIAL CART. 16</td>
<td>+0.7V (Same as SPECIAL CART. 15)</td>
</tr>
<tr>
<td>AUTO ADJUST</td>
<td></td>
<td>Automatic setting</td>
</tr>
</tbody>
</table>
TRAY COMMAND MODE

TRAY COM. =NORM
HP LaserJet 4 compatible
This is chosen by default.

TRAY COM. =SPEC.
HP LaserJet 3 compatible

PRINT BLANK PAGE

PRINT BLANK PAGE

PICKUP RETRY SET

PICKUP RETRY =2
Set number of re-trying of paper feeding. The number can be select in the range from 0 to 7. 2 is chosen by default.

TowerFeed ON/OFF

TowerFeed=OFF
TowerFeed is not attached.
This is chosen by default.

TowerFeed=ON
TowerFeed is attached.

FONT SELECT

PAPER&TRAY SIZE

PARALLEL MENU

RS-232C MENU

REPRINT ON/OFF

ROM DATE DISPLAY

AUTO HRC ON/OFF

APPLETALK AT/PS

PS BINARY SELECT

PS QUOTE BINARY

PS IMAGE MASK

PS CEIL MODE

PS CEIL=FLOOR
This is chosen by default.

PS CEIL=CEIL

PS STATUS ECHO

STATUS ECHO=ON
This setting effects PS calculation.
This is chosen by default.

STATUS ECHO=OFF

BOISE ID MODE
PROTECT OFF MODE
- PRO.OFF=AUTO
- PRO.OFF=NORMAL

Carry out the page protect if it is turned OFF. This is chosen by default.

HP ESC E COMMAND
- HP ESC E=RESET
- HP ESC E=F/F

Reset a printer with ESC E. This is chosen by default.

Carry out form feed with ESC E.

This is chosen by default.

DPX FF SUP. MODE
- DPX FF SUP. =NORMAL
- DPX FF SUP. =SPEC.

Not eject paper if both the 1st and 2nd faces are blank.

This is chosen by default.

PS300RESO
- PS300RESO =NO
- PS300RESO =IF 2M
- PS300RESO =FORCE

When the total memory is 2MB, 300 dpi is automatically selected in PS for less memory full.
Use 300 dpi only in PS.

This setting delays paper jam error detection. This is chosen by default.

JAM CHECK LEVEL
- JAM CHECK=TIGHT
- JAM CHECK=LOOSE

This is chosen by default.

COPY PAGES
- COPY PAGES=ON
- COPY PAGES=OFF

1 page is fixed for the copy page number.

This is chosen by default.

PANEL RESET MODE
- RESET=JOB
- RESET=NORMAL

Settings made on the panel are reset job by job.
This is chosen by default.

USB SETTING
- USB=ENABLE
- USB=DISABLE

Turn ON USB function. This is chosen by default.

Turn OFF USB function.
A5 paper size in portrait can be printed. To protect the fixing unit from overheat, printing speed will slow down. This is chosen by default.

A5 paper size in landscape can be printed. Printing speed will be maintained as A5 paper width in landscape is the same as A4 paper width in portrait.

For faster print after paper jam occurs. It is very depending on memory status. This is chosen by default.

Clear NV-RAM
Page counter cannot be cleared without a password.

Display the number of the life counter for the periodical replacement parts with 100,000 pages life. See page V-1.

Reset the life counter for the periodical replacement parts with 100,000 pages life.
Display the number of the life counter for the periodical replacement parts with 200,000 pages life. See page V-1.
Reset the life counter for the periodical replacement parts with 200,000 pages life.
Appendix A

12. SERIAL NO. DESCRIPTIONS

The descriptions as below shows how to read labels on each place.

<ID for production month of Printer>

<table>
<thead>
<tr>
<th>Letter</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>January</td>
</tr>
<tr>
<td>B</td>
<td>February</td>
</tr>
<tr>
<td>C</td>
<td>March</td>
</tr>
<tr>
<td>D</td>
<td>April</td>
</tr>
<tr>
<td>E</td>
<td>May</td>
</tr>
<tr>
<td>F</td>
<td>June</td>
</tr>
<tr>
<td>G</td>
<td>July</td>
</tr>
<tr>
<td>H</td>
<td>August</td>
</tr>
<tr>
<td>J</td>
<td>September</td>
</tr>
<tr>
<td>K</td>
<td>October</td>
</tr>
<tr>
<td>L</td>
<td>November</td>
</tr>
<tr>
<td>M</td>
<td>December</td>
</tr>
</tbody>
</table>

<ID for production month of other parts than the printer>

<table>
<thead>
<tr>
<th>Number</th>
<th>Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>January</td>
</tr>
<tr>
<td>2</td>
<td>February</td>
</tr>
<tr>
<td>3</td>
<td>March</td>
</tr>
<tr>
<td>5</td>
<td>May</td>
</tr>
<tr>
<td>6</td>
<td>June</td>
</tr>
<tr>
<td>7</td>
<td>July</td>
</tr>
<tr>
<td>9</td>
<td>September</td>
</tr>
<tr>
<td>X</td>
<td>October</td>
</tr>
<tr>
<td>Y</td>
<td>November</td>
</tr>
</tbody>
</table>

(1) Printer

```
XXXXXXXXL7S11101
```

- **MODEL NO.**
- **FACTORY NO.**
- **YEAR**
- **MONTH**
- **SERIAL NO.**